Imprimer

CHASLES, Michel

CHASLES, Michel



Né le 15 novembre 1793 à Épernon
Décédé le 18 décembre 1880 à Paris






Extrait de l'article CHASLES (Michel), par René Taton, Dictionnaire des biographies, PUF, 1958.

« Éminent géomètre français né à Épernon le 15 novembre 1793. Élève de l'École Polytechnique (1812), il fut classé à sa sortie (1814) dans le génie militaire mais en démissionna aussitôt pour se consacrer à des études de géométrie et d'histoire des mathématiques.
Après un échec comme agent de change, il se retira à Bruxelles où il reprit ses recherches.
Plusieurs mémoires de grande valeur et son célèbre Aperçu historique (Bruxelles, 1837) attirèrent l'attention sur ses hautes qualités de géomètre.
Élu correspondant de l'Académie des Sciences en 1839, il occupa de 1841 à 1845 la chaire des machines à l’École Polytechnique.
En 1846, le ministre créa pour lui à la Sorbonne une chaire de géométrie supérieure, que Chasles illustra brillamment pendant trente ans.
Membre de l’Académie des Sciences en 1851, il joua un rôle éminent dans le développement des diverses branches de la géométrie projective et de la géométrie moderne. L’œuvre de Chasles en histoire des mathématiques est également très importante.
Bibliophile averti, il fut cependant victime d’un célèbre faussaire, Vrain-Lucas, qui lui vendit à prix d’or de faux autographes. Chasles, appuyé d’abord par de nombreux savants, tenta de défendre l’authenticité des pièces de plus en plus étonnantes que Vrain-Lucas confectionnait avec beaucoup d’adresse, pour répondre aux objections de certains spécialistes ; mais, finalement, il dut se rendre à l’évidence devant les aveux du faussaire démasqué.
Malgré cette trop grande naïveté, Michel Chasles, qui mourut à Paris le 18 décembre 1880, reste l’un des géomètres les plus originaux du XIXe siècle en même temps qu’un éminent historien de la géométrie. »







Affichage par page
Trier par
Référence: 057

violet.jpg  rouge.jpg

Nous nous proposons, dans cet aperçu, de présenter une analyse rapide des principales découvertes qui ont porté la Géométrie pure au degré d'extension où elle est parvenue de nos jours, et particulièrement de celles qui ont préparé les méthodes récentes.
Nous indiquerons ensuite, parmi ces méthodes, celles auxquelles nous paraissent pouvoir se rattacher la plupart des innombrables théorèmes nouveaux dont s'est enrichie la science dans ces derniers temps.
Enfin nous exposerons la nature et le caractère philosophique des deux principes généraux de l'étendue, qui font l'objet principal de ce mémoire.
Michel CHASLES, But de l'Ouvrage

Lorsqu'on pense que c'est cette Géométrie qui fut si féconde, entre les mains des Archimède, des Hipparque, des Apollonius ; que c'est la seule qui fut connue des Neper, des Viète, des Fermat, des Descartes, des Galilée, des Pascal, des Huygens, des Roberval ; que les Newton, les Halley, les Maclaurin la cultivèrent avec une sorte de prédilection, on peut croire que cette Géométrie a ses avantages.
Lazare CARNOT, Géométrie de Position, 1803

68,00 *
Référence: 058

violet.jpg  rouge.jpg

Nous nous proposons de traiter, dans le mémoire qui va suivre, des méthodes comprises dans nos deuxième et troisième divisions, et de mettre au jour les deux principes généraux de l'étendue, auxquels nous avons dit que toutes ces méthodes peuvent se rattacher ; et qui constituent deux doctrines générales de déformation et de transformation des figures.
Nous démontrerons ces deux PRINCIPES d'une manière directe, qui en fera des vérités absolues et abstraites, dégagées et indépendantes de toutes méthodes particulières propres à les justifier ou a en faciliter les applications dans quelques cas particuliers.
Nous les présenterons, ainsi que nous l'avons déjà dit, dans une plus grande généralité qu'aucune de ces méthodes. L'extension que nous leur donnerons trouvera sa principale utilité dans un principe de relations de grandeur extrêmement simple, qui les rendra applicables à de nombreuses questions nouvelles.
Ce principe repose sur une relation unique, à laquelle il suffira toujours de ramener toutes les autres. Cette relation est celle que nous avons appelée rapport anharmonique de quatre points ou d'un faisceau de quatre droites. C'est là le type unique de toutes les relations transformables par les deux principes que nous démontrons. Et la loi de correspondance entre une figure et sa transformée, consiste dans l'égalité des rapports anharmoniques correspondants.
La simplicité de cette loi, et celle du rapport anharmonique rendent cette forme de relations éminemment propre à jouer un rôle si important dans la science de l'étendue.
Quand les relations proposées paraîtront au premier abord ne pas rentrer dans cette formule, l'art du géomètre consistera à les y ramener par différentes opérations préparatoires, analogues, sous certains rapports, aux changements de variables et aux transformations de l'analyse.
Michel CHASLES, Objet du Mémoire

42,00 *
Référence: 257

rouge.jpg

Ce Volume est divisé en quatre Sections.
La première contient un ensemble de propositions dont l'enchaînement naturel donne lieu à trois théories qui se font suite et sont le développement d'une même notion et d'un même théorème fondamental.
Cette notion se rapporte à une certaine fonction de segments ou d'angles, appelées rapport anharmonique de quatre points ou d'un faisceau de quatre droites.
Les trois théories successives auxquelles donne lieu cette fonction, que l'on considère dans un ou plusieurs systèmes soit de quatre points, soit de quatre droites, peuvent être dites théories du rapport anharmonique, des divisions et faisceaux homographiques, et de l'involution.
Ces théories forment la base de nos procédés de démonstration. Chacune des propositions dont elles se composent s'y trouve comme un anneau nécessaire à leur enchaînement continu, et toutes sont susceptibles d'applications ultérieures très diverses.
Michel CHASLES, Préface

96,00 *
Référence: 282

rouge.jpg

Les méthodes de l'auteur sont connues, ses appellations sont admises dans la science. Il n'a plus à en faire la présentation, ni en quelque sorte à excuser leur audace. Comme Euclide, il entre en matière par quelques lignes de définitions, et présente dès la première page le théorème qui sert de base à tout l'édifice. Il s'avance alors à travers son sujet, avec le calme et la majesté de la vérité pure, avec l'assurance que donne la force, mais en même temps avec l'élégance qui la dissimule et la rend attrayante, avec la sobriété et la discrétion que le goût inspire, ne cueillant dans chaque matière que la fleur, et justifiant ainsi à tous égards cet heureux parallèle qu'un de nos plus illustres Académiciens, Joseph Liouville, faisait un jour en disant de l'auteur qu'il est « le La Fontaine des Mathématiques ».
E. de JONQUIÈRES, Nouvelles annales de mathématiques 2e série, tome 4 (1865)

78,00 *
Référence: 258

violet.jpg  rouge.jpg

Ayant dû présenter une analyse de l'ouvrage de Pappus, surtout des nombreux Lemmes relatifs aux Porismes d'Euclide, dans l'Aperçu historique, où je traitais de l'origine et du développement des Méthodes en Géométrie, j'ai été conduit à m'occuper, après tant d'autres géomètres, de la question des Porismes. L'intérêt du sujet m'a entraîné souvent dans des recherches plus prolongées que je ne l'aurais voulu, excité par le désir de parvenir à porter un jugement sur le travail de Simson, et même à donner suite, s'il m'était possible, à cette divination qui paraissait comporter plusieurs questions essentielles, indépendamment du rétablissement de l'ouvrage lui-même.
On avait remarqué dans les Lemmes de Pappus certaines traces de la théorie des transversales, telles que quelques propriétés relatives au rapport harmonique de quatre points et une relation d'involution dans le quadrilatère coupé par une droite.
Un nouvel examen de ces Lemmes m'y a fait reconnaître une autre proposition, plus humble en apparence peut-être, et qui, par cette raison sans doute, avait échappé aux investigations antérieures, quoique, en réalité, elle ait une bien plus grande importance que toutes les autres. Il s'agit, en effet, de la propriété projective du rapport anharmonique de quatre points, qui se trouve démontrée dans six Lemmes différents et dont, en outre, Pappus fait usage pour la démonstration de plusieurs autres Lemmes.
Ces circonstances, bien propres à fixer toute mon attention, pouvaient m'autoriser à penser que les propositions d'Euclide étaient de celles auxquelles conduisent naturellement les développements et les applications de la notion du rapport anharmonique, devenus fondamentale dans la géométrie moderne.
Parmi ces développements se présente en première ligne la théorie des divisions homographiques formées sur deux droites ou sur une seule, dont le caractère propre consiste en ce que le rapport anharmonique de quatre points d'une division est égal à celui des quatre points correspondants de l'autre division : ce qu'on exprime par des équations à deux, à trois et à quatre termes.
Or, ces équations une fois connues, on ne pouvait manquer de s'apercevoir que la plupart des énoncés de Pappus constituent des relations de segments telles que celles qui se déduisent de ces équations mêmes. Remarque importante, car elle devait faire espérer que ce pourrait être cette théorie fort simple des divisions homographiques qui donnerait enfin la clef des nombreux Porismes énoncés par Pappus et dont la signification avait résisté aux efforts de tant de géomètres et de Simson lui-même.
Et en effet, ce point de départ dans mes essais de divination m'a conduit assez aisément au rétablissement de la plupart des énoncés de Pappus, c'est-à-dire, à des propositions, souvent très multiples, qui satisfont aux conditions exprimées par ces énoncés concis et énigmatiques.
Michel CHASLES, Introduction

63,00 *
Référence: 259

violet.jpg  rouge.jpg

Les Mathématiques, considérées indépendamment de leurs applications, se divisent en deux branches distinctes, qui se prêtent un mutuel secours, l'Analyse et la Géométrie. C'est des recherches qui ont pour objet spécial cette seconde partie, la Géométrie, ou qui incidemment ont contribué à ses progrès, que nous avons à présenter un exposé.
Le sujet est vaste ; car si, d'une part, la Géométrie a pour objet général l'étude des figures, c'est-à-dire des lignes et des surfaces déterminées a priori par certaines lois ; d'autre part, ces lignes et ces surfaces interviennent d'une manière utile et même nécessaire dans les questions de Mécanique et de Physique mathématique, et même aussi quelquefois dans les questions d'Analyse pure. Il nous faudra donc, non seulement scruter les travaux de Géométrie proprement dite, mais encore rechercher dans les ouvrages et les nombreux mémoires publiés sur les différentes branches des Mathématiques les résultats partiels qui constituent un progrès dans la théorie des courbes et des surfaces, et en général dans quelque partie de la Géométrie. C'est ainsi que les noms de nos confrères MM. Ch. Dupin, Lamé, Duhamel, Liouville, Delaunay, Bertrand, Hermite, Serret, Ossian Bonnet, de Saint-Venant, dont les travaux, pour la plupart, ont pour objet principal l'étude des théories analytiques et de leur application à la Physique, à l'Astronomie, à la Mécanique, se présenteront naturellement dans le travail qui nous est confié, sans que d'ailleurs nous ayons la pensée de faire connaître complètement les progrès dont les sciences mathématiques leur sont redevables, et qui assurent leur place parmi les chefs et les représentants du mouvement scientifique général de notre temps.
Michel CHASLES, Introduction

69,00 *
*

-5%