Imprimer

LAUGEL, Léonce


Affichage par page
Trier par
Référence: 293

rouge.jpg

Parmi les mémoires courts de Gauss, les Disquisitiones generales circa superficies curvas constituent peut-être le travail le plus parfait d'un point de vue stylistique ; l'approche de Gauss est analytique, directe et concise. Gauss avait bien raison de le considérer comme une présentation complète et plutôt satisfaisante de ses idées en géométrie.
W. K. BÜHLER, Gauss. A biographical study, Springer, 1981

27,00 *
Référence: 037

rouge.jpg

Qui ne soulèverait volontiers le voile qui nous cache l'avenir afin de jeter un coup d'œil sur les progrès de notre Science et les secrets de son développement ultérieur durant les siècles futurs ? Dans ce champ si fécond et si vaste de la Science mathématique, quels seront les buts particuliers que tenteront d'atteindre les guides de la pensée mathématique des générations futures ? Quelles seront, dans ce champ, les nouvelles vérités et les nouvelles méthodes découvertes par le siècle qui commence ?
L'histoire enseigne la continuité du développement de la Science. Nous savons que chaque époque a ses problèmes que l'époque suivante résout, ou laisse de côté comme stériles, en les remplaçant par d'autres. Si nous désirons nous figurer le développement présumable de la Science mathématique dans un avenir prochain, nous devons repasser dans notre esprit les questions pendantes et porter notre attention sur les problèmes posés actuellement et dont nous attendons de l'avenir la résolution. Le moment présent, au seuil du vingtième siècle, me semble bien choisi pour passer en revue ces problèmes ; en effet, les grandes divisions du temps non seulement permettent de jeter un regard sur le passé, mais encore attirent notre pensée sur l'avenir inconnu.
Le grand rôle joué par des problèmes déterminés dans le progrès général de la Science mathématique est non moins incontestable que l'influence qu'ont ces problèmes sur le travail particulier du chercheur. Tant qu'une branche de la Science jouit d'une abondance de problèmes, elle est pleine de vie ; le manque de problèmes dénote la mort, ou la cessation du développement propre de cette branche. Et de même que dans toute entreprise humaine il faut poursuivre un but, de même dans la recherche mathématique il faut des problèmes. La puissance du chercheur se retrempe dans leur résolution, il y trouve de nouvelles méthodes et de nouveaux points de vue, d'où il découvre un horizon plus vaste et plus libre.
David HILBERT, Introduction

16,00 *
Référence: 076

rouge.jpg

L'œuvre de Bernhard Riemann est la plus belle et la plus grande de l'Analyse à notre époque : elle a été consacrée par une admiration unanime, elle laissera dans la Science une trace impérissable. Les géomètres contemporains s'inspirent dans leurs travaux de ses conceptions, ils en révèlent chaque jour par leurs découvertes l'importance et la fécondité. L'illustre géomètre a ouvert dans l'Analyse comme une ère nouvelle qui porte l'empreinte de son génie.
Charles HERMITE, Préface

65,00 *
*