Imprimer

BRELOT, Marcel

1903-1987

 


Affichage par page
Trier par
Référence: 066

rouge.jpg

Au cours de l'hiver 1928-1929, M. Émile Borel et la Direction du nouvel Institut Henri Poincaré me firent le grand honneur de me demander quelques conférences. Je choisis comme sujet la théorie mathématique des fluctuations biologiques. Le présent ouvrage a le titre même de ces conférences : Théorie mathématique de la lutte pour la Vie.
En effet le domaine d'application de ces recherches comprend tous les phénomènes de lutte entre les individus d'une collectivité, les gains des uns étant obtenus grâce aux pertes des autres, gains et pertes pouvant s"évaluer numériquement.
Cette étude repose sur celle des intégrales de certaines équations différentielles et intégro-différentielles, qu'il faut examiner très en détail soit d'une manière quantitative, soit, bien souvent, d'une manière seulement qualitative.
Je tiens ici à rendre hommage à la mémoire de Henri Poincaré et à son génie, en rappelant combien il a insisté dans certains de ses travaux classiques, sur le rôle que peut jouer dans la philosophie naturelle l'étude qualitative des intégrales des équations différentielles.
Vito VOLTERRA, Préface

35,00 *
Référence: 072

rouge.jpg  bleu.jpg

Ce livre, simple et maniable, met au point une question apparue dans la Science ayec Hugoniot, brillamment poursuivie par M. Jacques Hadamard et aboutissant actuellement à la Mécanique ondulatoire, à la lumière ondulée et photonique, aux travaux développés en France par le génie de M. Louis de Broglie. Un coup d'oeil sur l'index placé à la fin du volume rappelle notamment Bateman, surtout Cauchy, Charpit, Darboux, Debye, Dirac, Einstein, Fermi. Fresnel, Goursat, Heisenberg, Jacobi, Janet, Maxwell, Pfaff, Planck, Riemann, Schrödinger, Volterra. Désordre alphabétique qui, cependant, rapproche toute la Physique théorique des équations aux dérivées partielles du second et du premier ordre. Car c'était véritablement un scandale de la Physique mathématique classique que de voir celle-ci ne reposer que sur des équations du second ordre; il restait à y incorporer l'équation de Jacobi, ce qui donna précisément naissance à la Mécanique des ondes.
Comme le fait expressément et excellemment remarquer M. Levi-Civita, la dualité des ondes et des corpuscules résulte de dualités analytiques fondamentales et simples, notamment de celle des caractéristiques et des bicaractéristiques. Ces notions ne sont pas nouvelles; il faut, pour la plus grande partie, les faire remonter à Cauchy. Une fois de plus, l'analyse abstraite aura pris, tout à coup, une signification phénoménale.
M. Levi-Civita est très large dans sa définition du mouvement ondulatoire. L'onde est la propagation d'une perturbation, parfois avec vitesse très grande, qui peut cependant ne dépendre que de petits mouvements, au sens qu'ont ces deux derniers mots dans la Mécanique classique. Autre raison pour profiter de Lagrange, d'Hamilton et de Jacobi dans les théories ondulatoires.
Les ondes ne vont pas sans conditions de compatibilité, les unes géométrico-cinématiques, les autres dynamiques. Ces dernières donnent des jeux d'opérateurs,un déterminant qui, annulé, conduit à l'équation aux dérivées partielles des variétés caractéristiques. Signalons encore les impossibilités relatives aux fluides visqueux et le transport de la notion d'onde, par discontinuité transversale, dans la théorie de Maxwell. Certes l'optique ondulatoire et la théorie électromagnétique ont, depuis longtemps, des représentations d'ondes, généralement trigonométriques mais ce n'était pas sur de tels points qu'il y avait intérêt à revenir. Il fallait montrer plutôt comment l'onde discontinuité s'introduisait dans ces disciplines et c'est, au fond, fort simple, les équations générales de la dynamique des milieux continus étant de très proches parentes de celles de Maxwell.
Adolphe BUHL, L'Enseignement Mathématique, Vol. 30 (1931)

21,00 *
*

-5%