Imprimer

COXETER, H. S. M.

COXETER, H. S. M.


Né le 9 février 1907 à Londres
Décédé le 31 mars 2003 à Toronto

Mathématicien anglais.
Un des grands géomètres du XXe siècle

 

Ouvrages :
1942 : Non-Euclidean Geometry (6e édition, 1998)
1948 : Regular Polytopes (3e édition 1973)
1949 : The Real Projective Plane (3e édition, 1993)
1961 : Introduction to Geometry (2e édition, 1969
1964 : Projective geometry (2e édition 1974)
1967 : avec S. L. Greitzer, Geometry Revisited
1971 : Redécouvrons la géométrie, traduction de Geometry Revisited
1974 : Regular Complex Polytopes (2e édition, 1991)
1974 : avec W. W. Rouse Ball, Mathematical Recreations and Essays, 12e édition (13e édition, 1987)









Affichage par page
Trier par
Référence: 134

rouge.jpg

Des enthousiastes sans jugement conduisent l'élève à croire que la géométrie est « hors du courant essentiel des mathématiques » et qu'elle devrait être remplacée par l'analyse ou la théorie des ensembles.
Cette situation inférieure de la géométrie dans les programmes scolaires est peut-être due à ce que les éducateurs connaissent mal la nature de la géométrie et les progrès réalisés au cours du développement de cette dernière. Parmi ces progrès, figurent maints beaux résultats ; par exemple le théorème de Brianchon, le théorème de Feuerbach, le théorème de Petersen-Schoute et le théorème de Morley. Il faut se rappeler, selon l'histoire, qu'Euclide écrivit pour des adultes se préparant à étudier la géométrie. D'autre part, jusqu'au vingtième siècle, l'une des principales raisons justifiant l'enseignement de la géométrie était que la méthode axiomatique de cette dernière constituait, croyait-on, la meilleure introduction au raisonnement déductif ; et, naturellement, en vue d'un enseignement efficace, on insistait sur cette méthode. Cependant, quand cela lui convenait, nul géomètre, ancien ou moderne, n'a hésité à utiliser des procédés moins orthodoxes. Si la trigonométrie, la géométrie analytique ou les méthodes vectorielles peuvent l'aider, le géomètre y aura recours. De plus, il a inventé des techniques modernes, à la fois élégantes et puissantes, qui lui sont propres : l'une d'elles repose sur l'emploi de transformations telles que rotations, symétries et homothéties, qui permettent d'abréger la démonstration de certains théorèmes, et, aussi, établissent un lien entre la géométrie, d'une part, la cristallographie et l'art, d'autre part. Le chapitre 4 est consacré à cet aspect « dynamique » de la géométrie. Une autre technique « moderne » fait appel à l'inversion qui traite de points et de cercles en considérant une droite comme un cercle passant par le « point à l'infini ». Le chapitre 5 en donnera quelques aperçus. Enfin, une troisième technique est celle de la géométrie projective qui, sans s'attacher aux distances et aux angles, met en lumière l'analyse entre points et droites (celles-ci étant infiniment étendues et non limitées à de simples segments). Ici, deux points quelconques sont joints par une droite, et deux droites quelconques se coupent en un point ; de plus, deux droites parallèles sont considérées comme ayant un point commun situé sur « la droite à l'infini ». Dans le chapitre 6, on trouvera quelques indications sur ce sujet.
Aujourd'hui encore, la géométrie possède toutes les vertus que les éducateurs lui attribuaient il y a une génération : elle existe toujours dans la nature, et attend qu'on la découvre et qu'on apprécie. Pour l'élève, et surtout par ses propriétés projectives, la géométrie ne cesse de constituer une excellente introduction à l'axiomatique. Elle possède encore l'attrait esthétique qu'elle a toujours eu, et la beauté de ses résultats ne s'est pas estompée. En fait, elle est plus utile et même plus nécessaire aux savants et aux mathématiciens qu'elle ne le fut jamais : on le voit en considérant, par exemple, les formes des orbites des satellites artificiels et la géométrie à quatre dimensions dans le continu espace-temps.
Au cours des siècles, la géométrie s'est développée. De nouveaux concepts, de nouvelles méthodes d'action furent forgés : à l'élève, ils apporteront défi et surprise. Par les moyens qui nous conviendront le mieux, revenons donc à Euclide ; et, pour nous-mêmes, découvrons quelques-uns des plus récents résultats. Peut-être pourrons-nous, ainsi, retrouver un peu de l'intimidation émerveillée que suscita en nous le premier contact avec la géométrie…
H. S. M. COXETER, Avant-Propos

 

35,00 *
*

-5%