Référence: 228
Cet ouvrage a pour objet d'exposer le développement historique des Sciences Mathématiques, avec un aperçu de la vie et des découvertes des savants qui ont le plus contribué aux progrès de la science. |
116,00 €
*
|
|
BOUTROUX : L'idéal scientifique des mathématiciens dans l'Antiquité et dans les Temps Modernes, 1920
Il est, en matière de science, un principe qui paraît admis, sinon par tous les philosophes, du moins par la grande majorité des savants : c'est qu'il ne faut pas confondre la science déjà faite avec la science qui se fait. En d'autres termes, on ne peut pas espérer déterminer les caractères essentiels de la connaissance scientifique si l'on ignore comment cette connaissance est acquise ; on ne peut pas juger les théories des savants si l'on n'est pas préalablement initié à l'inspiration qui les a suggérées, au mouvement de pensée qui a permis de les réaliser. Si ce principe est vrai de toutes les sciences, sans doute l'est-il surtout des Mathématiques pures : car celles-ci, n'étant, ni guidées par l'expérience, ni suscitées par les événements de la vie, dépendent plus que toute autre discipline de l'invention et des conceptions de leurs auteurs. Et c'est pourquoi l'on souhaiterait pouvoir répondre avec une parfaite précision aux questions suivantes : Quelle idée les mathématiciens se font-ils de leur science, quel dessein poursuivent-ils, quels sont les principes directeurs de leur activité, quel est le phare qui oriente leurs recherches ? |
34,00 €
*
|
|
Référence: 284
Lazare Carnot, dans ses Réflexions sur la Métaphysique du Calcul infinitésimal (ou différentiel), où il discute avec beaucoup de soin les principes de ce calcul, observe que c'est en vertu de la loi de continuité, que les quantités évanouissantes gardent encore le rapport dont elles se sont approchées par degrés, avant de s'évanouir. Cet écrit prouve que si on avait créé des mots lorsqu'il en était besoin, on aurait eu des idées plus claires. En appelant équations imparfaites, les équations différentielles, Lazare Carnot jette un grand jour sur leur théorie. En effet, lorsque l'on considère les différentielles qu'elles contiennent, comme représentant les accroissements des variables, elles n'ont lieu que d'une manière approchée ; mais leur degré d'exactitude est en quelque sorte indéfini, car il dépend de la petitesse qu'on suppose aux changements des variables ; et puisque rien ne limite cette petitesse, les équations différentielles peuvent donc être aussi près de la vérité qu'on le voudra : voilà les idées de Leibnitz traduites en Analyse. Lazare Carnot fait voir ensuite, comment les équations imparfaites deviennent rigoureuses à la fin du calcul, et à quel signe on reconnaît leur légitimité ; ce signe est la disparition totale des quantités différentielles, dont pouvait provenir l'erreur, s'il y en avait. |
45,00 €
*
|
|
Référence: 222
A reparaître Des différentes parties de l'histoire de la civilisation, aucune ne présente autant d'obscurité que l'apparition, la progression et la diffusion des techniques. Il faut savoir gré à M. Daumas d'avoir, d'un point de vue dialectique, considéré les instruments scientifiques non seulement comme des outils construits pour les astronomes, les naturalistes ou les physiciens et appelés à se démoder plus ou moins vite, mais encore comme les produits successifs de l'activité féconde des constructeurs, souvent ingénieux et toujours attentifs au développement rapide des techniques et de leur industrie. L'auteur a entrepris de mettre en lumière l'évolution des instruments scientifiques de 1608 aux premières années du XIXe siècle, soit depuis la construction en Hollande de la première lunette astronomique jusqu'à l'affirmation du plein essor de la grande industrie outre-Manche, la naissance de la science des machines et l'apparition de l'électricité voltaïque. Il s'est surtout attaché à retracer l'évolution des moyens techniques utilisés par les constructeurs d'instruments scientifiques durant cette longue période, où d'importantes découvertes transformèrent profondément les conditions de fabrication et la condition des fabricants. |
|
Référence: 250
La dernière entreprise de Delambre fut une Histoire de l'Astronomie qu'il se proposa de dégager de sa mythologie et de toutes les conceptions fantastiques, de toutes les hypothèses chimériques et fabuleuses dont l'avaient embarrassée des écrivains qui avaient plus d'imagination que de savoir. |
190,00 €
*
|
|
Référence: 251
CHAPITRES Livre I Livre II Livre III |
110,00 €
*
|
|
Référence: 252
Les trois premiers volumes de l'ouvrage de M. Delambre ont conduit ses lecteurs jusqu'au temps de Copernic ; les deux siècles suivants mettront sous leurs yeux le beau spectacle de l'intelligence humaine découvrant, par des moyens qu'elle a su créer, quelques-unes des lois générales de la nature. Les mathématiques, la physique, et surtout la saine philosophie perfectionneront les méthodes, multiplieront les découvertes, chasseront les vieilles erreurs, et placeront les connaissances du système du monde au premier rang entre les sciences accessibles à notre raison. La tâche de l'historien devient moins pénible, parce qu'elle est plus agréable ; mais d'un autre côté, les matériaux abondent, les hommes sont vus de plus près, leurs passions et leurs intérêts n'ont pas encore perdu toute leur influence. L'histoire de l'astronomie moderne n'est pas moins embarrassée dans sa marche que celle des événements politiques de nos jours. Malgré ces entraves, M. Delambre ne s'écarte pas de son impartialité historique, poussée quelquefois jusqu'à la sévérité. L'auteur a cru devoir en prévenir ses lecteurs ; écoutons-le. |
235,00 €
*
|
|
Référence: 253
Nous commencerons par Newton, Flamsteed et Halley, qui paraîtraient appartenir au siècle précédent ; mais les découvertes de Newton n'ont porté leur fruit que longtemps après la première apparition du livre des Principes : c'est le dix-huitième siècle qui a vu paraître la Cométographie de Halley et l'Histoire céleste de Flamsteed. Notre histoire sera terminée par l'examen de tous les ouvrages qui ont pour objet la grandeur et la figure de la Terre, et ce dernier livre sera le seul où pourront être compris quelques auteurs encore vivants. |
125,00 €
*
|
|
Référence: 210
A reparaître Depuis 1948, à raison de 18 exposés par an, les conférenciers du Séminaire Bourbaki décrivent les résultats les plus marquants obtenus chaque année dans les branches des mathématiques pures qui paraissent les plus importantes aux collaborateurs de N. Bourbaki. Presque tous ces exposés ont été publiés, et constituent donc un ensemble de textes que l'on peut à juste titre considérer comme l'Encyclopédie d'une grande partie des mathématiques de notre temps. Toutefois deux exposés consécutifs chronologiquement traitent en général de sujets complètement différents, ce qui rend à peu près impossible à un mathématicien de les utiliser pour se mettre au courant de questions n'appartenant pas à sa spécialité. Ce volume se propose de pallier cet inconvénient en groupant les exposés du Séminaire Bourbaki sous un nombre assez restreint de rubriques, pour chacune desquelles on résume de façon succinte les principales notions, les méthodes et les résultats les plus notables de la théorie correspondante. |
|
Référence: 057
Nous nous proposons, dans cet aperçu, de présenter une analyse rapide des principales découvertes qui ont porté la Géométrie pure au degré d'extension où elle est parvenue de nos jours, et particulièrement de celles qui ont préparé les méthodes récentes. Lorsqu'on pense que c'est cette Géométrie qui fut si féconde, entre les mains des Archimède, des Hipparque, des Apollonius ; que c'est la seule qui fut connue des Neper, des Viète, des Fermat, des Descartes, des Galilée, des Pascal, des Huygens, des Roberval ; que les Newton, les Halley, les Maclaurin la cultivèrent avec une sorte de prédilection, on peut croire que cette Géométrie a ses avantages. |
68,00 €
*
|
|
Référence: 058
Nous nous proposons de traiter, dans le mémoire qui va suivre, des méthodes comprises dans nos deuxième et troisième divisions, et de mettre au jour les deux principes généraux de l'étendue, auxquels nous avons dit que toutes ces méthodes peuvent se rattacher ; et qui constituent deux doctrines générales de déformation et de transformation des figures. |
42,00 €
*
|
|
Référence: 258
Ayant dû présenter une analyse de l'ouvrage de Pappus, surtout des nombreux Lemmes relatifs aux Porismes d'Euclide, dans l'Aperçu historique, où je traitais de l'origine et du développement des Méthodes en Géométrie, j'ai été conduit à m'occuper, après tant d'autres géomètres, de la question des Porismes. L'intérêt du sujet m'a entraîné souvent dans des recherches plus prolongées que je ne l'aurais voulu, excité par le désir de parvenir à porter un jugement sur le travail de Simson, et même à donner suite, s'il m'était possible, à cette divination qui paraissait comporter plusieurs questions essentielles, indépendamment du rétablissement de l'ouvrage lui-même. |
63,00 €
*
|
|
Référence: 259
Les Mathématiques, considérées indépendamment de leurs applications, se divisent en deux branches distinctes, qui se prêtent un mutuel secours, l'Analyse et la Géométrie. C'est des recherches qui ont pour objet spécial cette seconde partie, la Géométrie, ou qui incidemment ont contribué à ses progrès, que nous avons à présenter un exposé. |
69,00 €
*
|
|
Référence: 025
Averti des progrès les plus récents de la science, l'auteur déjà habitué à réfléchir aux nouvelles formes contemporaines de la Mécanique, a consacré la dernière partie de son livre à la Mécanique relativiste et à la Mécanique ondulatoire et quantique. Cet exposé très exactement fait en suivant de près, selon les habitudes de l'auteur, la pensée des novateurs et le texte de leurs écrits rend naturellement l'histoire de la Mécanique de M. Dugas beaucoup plus complète que toutes celles qui avaient été rédigées avant lui. |
87,00 €
*
|
|
Référence: 254
Duhem a consacré une grande partie de son labeur à l'histoire des sciences. Celle-ci n'était pas pour lui un simple objet de curiosité, car il pensait qu'on ne peut avoir une idée juste sur la science, si l'on se borne à la considérer dans son état actuel. Il était en même temps capable de faire œuvre d'érudit, qui remonte aux sources, compulse et compare les manuscrits, examine les écritures et propose des corrections de textes. |
135,00 €
*
|
|
Référence: 302
Mon but est de faire connaître le grand homme que fut Euler et l'œuvre immense qui a immortalisé son nom, ce nom qui mérite d'être connu de tous, même des personnes étrangères aux sciences mathématiques, puisque tous nous jouissons de progrès techniques insoupçonnés qui, directement, sont dus au labeur acharné de Léonard Euler. |
38,00 €
*
|
|
Référence: 143
Il va sans dire que je me suis efforcé de contrôler les uns par les autres tous les documents que j'ai eus entre les mains. Je me suis efforcé de le faire sans parti pris, bien qu'avec une sympathie sans cesse croissante pour le génial et infortuné jeune homme qui paya de tant de souffrances l'incroyable puissance de ses facultés ; j'ai tenu surtout à l'expliquer, ou du moins à expliquer ce qu'il y avait d'explicable dans son caractère et dans ses aventures. Je l'ai toujours vu au milieu des choses, des gens, des événements, des institutions de son époque ; un intérêt d'histoire s'ajoutait ainsi pour moi à un intérêt de biographie. Mon souhait essentiel est de substituer un portrait exact de cet illustre mathématicien aux vagues croquis que l'on en possédait ; mais j'avoue que ce serait aussi pour moi une vive satisfaction, si l'on jugeait qu'en racontant la vie de Galois j'ai pu éclairer d'un jour curieux quelques coins de la Révolution de 1830, et des années troublées et si vivantes entre lesquelles elle s'insère. |
10,00 €
*
|
|
Référence: 275
A reparaître
Maurice Solovine, venant de Roumanie, arriva à Berne en 1900 et y rencontra Einstein pour la première fois.
|
|
Référence: 256
Euclide vivait du temps de Ptolémée-Lagus, vers l'an 272 avant l'ère vulgaire ; Archimède l'a cité dans plusieurs de ses livres. Ptolémée ayant demandé à Euclide s'il n'y avait pas de manière plus facile que la sienne pour apprendre la Géométrie, Euclide répondit qu'il n'y avait pas de chemin royal pour arriver à cette science. C'est tout ce que nous savons d'Euclide : on ignore même quelle fut sa patrie. |
261,00 €
*
|
|
Référence: 291
A reparaître
Euler écrivit en 1748 son Introductio in Analysin Infinitorum, ouvrage composé pour servir d'introduction aux mathématiques pures. Il est divisé en deux parties.
|
|
Référence: 280
A reparaître
On peut regarder Fermat comme le premier inventeur des nouveaux calculs. Fermat cultiva avec un grand succès la science des nombres, et s'y fraya des routes nouvelles. La seule forme à adopter, pour la reproduction des ouvrages de Fermat, est celle du Précis français que nous avons essayé de rédiger, en nous appliquant à n'altérer ni à omettre aucune des idées ou des démonstrations de l'auteur, et en profitant pour notre exposition des avantages de l'écriture algébrique moderne. Par ce moyen, nous espérons avoir rendu aisément intelligibles des propositions dont l'élégance et la finesse sont obscurcies par des notations sans simplicité. Nous avons pensé qu'il suffisait, pour conserver la tradition historique, de transcrire quelques exemples de l'écriture algébrique ancienne, aussi imparfaite pour exprimer les énoncés, qu'incommode pour le développement des déductions et des calculs. |
|
Référence: 020
Les Œuvres de Galois n'avaient pas jusqu'ici fait l'objet d'une publication exhaustive et ordonnée. Après que Liouville les eut "découvertes" en 1846 et en eut révélé l'importance au public mathématique, divers fragments laissés de côté par Liouville furent publiés par Jules Tannery en 1906 ; et tout récemment, Taton rendait enfin public pour la première fois le texte complet de la fulgurante Préface rédigée par Galois dans sa prison de Sainte-Pélagie. On trouvera dans ce volume, classés et analysés par MM. Robert Bourgne et Jean-Pierre Azra avec un soin et une compétence auxquels il convient de rendre hommage, la totalité des articles, manuscrits et fragments laissés par Galois. On pourra peut-être ainsi mieux apprécier encore l'étendue et la profondeur de cet extraordinaire génie. |
87,00 €
*
|
|
GALOIS : Œuvres mathématiques, 1846 (Liouville) + LIE : Influence de Galois sur le développement ...
La grande portée de l'œuvre de Galois tient en somme à ce fait, que sa théorie si originale des équations algébriques est une application systématique de deux notions fondamentales de groupe et d'invariant ; notions qui prennent chaque jour dans les mathématiques une place plus prépondérante, et tendent à dominer tout l'ensemble de cette science. |
17,00 €
*
|
|
Référence: 137
La théorie des équations doit à Lagrange, Gauss et Abel des progrès considérables. mais aucun d'eux n'arriva à mettre en évidence l'élément fondamental dont dépendent toutes les propriétés de l'équation ; cette gloire était réservée à Galois, qui montra qu'à chaque équation algébrique correspond un groupe de substitutions dans lequel se reflètent les caractères essentiels de l'équation. En Algèbre, la théorie des groupes avait fait auparavant l'objet de nombreuses recherches dues, pour la plupart à Cauchy, qui avait introduit déjà certains éléments de classification ; les études de Galois sur la Théorie des équations lui montrèrent l'importance de la notion de sous-groupe invariant d'un groupe donné, et il fut ainsi conduit à partager les groupes en groupes simples et groupes composés, distinction fondamentale qui dépasse de beaucoup, en réalité, le domaine de l'Algèbre et s'étend au concept de groupes d'opérations dans son acception la plus étendue. |
31,00 €
*
|
|
Référence: 135
A reparaîtreGeorge Gamow, dans cet ouvrage, déploie une fois encore ses qualités d'historien, de vulgarisateur et d'homme d'esprit. |
|
Référence: 146
Les Grecs nous ont laissé la géométrie élémentaire et c'est par le rappel de leurs découvertes que nous débuterons. Le développement de la géométrie grecque est marqué par les étapes : Pythagore, les Éléates, Euclide, Apollonius. Nous avons ajouté à ce premier chapitre quelques indications sur les théorèmes de Quételet et Dandelin relatifs aux coniques, théorèmes que l'on verrait sans surprise figurer dans le Traité d'Apollonius. |
23,00 €
*
|
|
Référence: 095
Malgré la gloire qui environne le nom de Lavoisier, la vie du créateur de la chimie moderne n'a été l'objet d'aucune étude approfondie. Sauf ce que les courtes biographies de Lalande, de Fourcroy et de Cuvier nous ont appris, on ne sait rien de son existence si bien remplie et toute dévouée à la recherche de la vérité. On ignore ses vertus privées, son dévouement à la chose publique, sa philanthropie intelligente, les services qu'il a rendus à son pays comme académicien, économiste, agriculteur et financier. Les détails de sa mort prématurés sont inconnus, et des historiens ont pu même se demander si le tribunal révolutionnaire, en le faisant monter sur l'échafaud, n'avait pas frappé d'une juste condamnation un avide fermier général. |
45,00 €
*
|
|
HADAMARD : Essai sur la psychologie de l'invention dans le domaine mathématique, 1975 + POINCARÉ ...A reparaître
Cette étude, comme tout ce qu'on pourrait écrire sur l'invention en mathématiques, fut tout d'abord inspirée par la célèbre conférence d'Henri Poincaré à la Société de Psychologie à Paris. |
|
Référence: 338
Aucune correspondance d'Hermite ne fut plus suivie ni plus abondante que celle qu'il avait commencée en 1882 avec un astronome adjoint de l'Observatoire de Leyde, Thomas Stieltjes. Le souci des mêmes problèmes et une même tournure d'esprit attirèrent Hermite vers Stieltjes, et une vive sympathie s'établit vite entre le jeune débutant et le vétéran de la Science. La mort de Stieltjes, arrivée prématurément en 1894, put seule interrompre cette correspondance, unique peut-être dans l'histoire de la Science. Relisant, après ce triste événement, la longue série de lettres du géomètre éminent pour qui il avait une si affectueuse estime, Hermite pensa qu'il importait à la mémoire de Stieltjes que ce témoignage de son activité et de son génie mathématique |
150,00 €
*
|
|
Référence: 246
|
73,00 €
*
|
|
-5%
1 - 30 sur 80 résultats |
|