Imprimer

Analyse

 

rouge.jpg

Il est difficile de séparer complètement les domaines de l'algèbre et de l'analyse. En effet dans celle-ci la notion de limite est reine. On peut toutefois remarquer que l'analyse est consacrée aux ensembles possédant une structure très voisine de celle de R, par exemple comme les espaces vectoriels normés. Historiquement, l'analyse commença d'abord à explorer l'ensemble des nombres réels, puis des nombres complexes. Les théorèmes d'analyse sont la généralisation des résultats obtenus dans l'étude des dérivées et des intégrales, qui constituent le calcul différentiel et intégral, encore aujourd'hui l'un des monuments des mathématiques et de la science de l'ingénieur, d'une importance incomparable dans la « mathématisation » du monde actuel. Pendant tout le XIXe siècle, on a pu croire que les mathématiques tout entières deviendraient une extension de cette théorie des fonctions. Les structures de l'analyse sont à la fois algébriques et topologiques.
Si l'algèbre semble avoir remplacé l'analyse dans ce rôle primordial, il est juste de dire que l'étude des limites (ou encore des infiniments petits) reste, non seulement l'outil irremplaçable de la mathématique appliquée sous toutes ses formes, mais aussi un champ de recherches largement ouvert. Simplement doit-on faire remarquer que l'analyste moderne se place d'emblée dans des espaces beaucoup plus riches que l'espace traditionnel des réels, mais s'il obtient ainsi des résultats d'une portée théorique beaucoup plus étendue, l'esprit même de sa démarche est identique à celui d'un Legendre ou d'un Poincaré.

André WARUSFEL, Dictionnaire raisonné des Mathématiques, 1966, Éditions du Seuil

 


Affichage par page
Trier par
31 - 60 sur 70 résultats
Référence: 299


rouge.jpg  bleu.jpg

Dans le cours que j'ai professé au Collège de France, pendant les années 1898-1899 et 1899-1900, et dont diverses circonstances ont retardé la publication, je me suis proposé principalement de rechercher comment s'exerce l'influence des conditions aux limites sur le mouvement des fluides.
S'il s'agit des liquides, la question revient à un problème analogue à celui de Dirichlet, le problème de Neumann qui fait l'objet du premier Chapitre de cet ouvrage. La théorie des fonctions harmoniques a subi, dans ces derniers temps, d'importants perfectionnements dont la plupart ne se rattachaient que de loin à mon sujet; j'ai utilisé, en les empruntant à un mémoire de M. Stekloff, ceux qui intéressent directement le problème de Neumann.
Dans le cas des gaz, on est, au contraire, conduit à la théorie d'Hugoniot, sur laquelle l'attention a été attirée depuis quelques années, grâce aux leçons d'Hydrodynamique, Élasticité et Acoustique de M. Duhem.
Pour rendre tous les services que la Mécanique peut en attendre, cette théorie, m'a paru réclamer quelques compléments. C'est .ainsi que j'ai dû mettre en évidence les faits d'ordre purement cinématique en les séparant de ceux qui dépendent des propriétés dynamiques du mouvement. Moyennant cette distinction, ainsi qu'on devait s'y attendre, beaucoup de points de vue s'éclaircissent. Grâce à elle, en particulier, une représentation géométrique apparaît immédiatement. Celle-ci, à son tour, permet de rendre plus étroite l'analogie qui existe entre les .ondes telles que les conçoit Hugoniot et celles que considère la mécanique vibratoire.
Enfin, il y avait lieu de rapprocher de la théorie d'Hugoniot celle des caractéristiques des équations à plus de deux variables indépendantes qui en est l'expression analytique et dont J. Beudon, avant sa mort cruellement prématurée, a pu poser les fondements.
La résolution du problème de Cauchy pour les équations linéaires, suivant la voie ouverte par Kirchhoff, se relie d'une manière directe à la notion de caractéristique et se plaçait naturellement après elle.
Jacques HADAMARD, Avant-Propos

69,00 *
Référence: 300

rouge.jpg

Le présent ouvrage est un résumé de mes recherches sur le cas hyperbolique des équations linéaires aux dérivées partielles. J'ai eu le plaisir d'en exposer certaines parties à un public américain à Columbia University (1911), et d'en traiter d'autres aux Universités de Rome (1916) et de Zurich (1917).
L'origine des recherches qui vont suivre se trouve dans Kirchhoff, et surtout dans les Mémoires fondamentaux de M. Volterra sur les ondes sphériques et cylindriques. Je me suis proposé de poursuivre le travail du géomètre italien, et pour cela de le modifier et de l'étendre de sorte qu'il devienne applicable à toutes les équations hyperboliques (normales), au lieu de l'être à une seule d'entre elles.
D'un autre côté, cet ouvrage peut être considéré comme faisant suite à mes Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique, et même comme remplaçant une grande partie du dernier chapitre. Celui-ci n'était, du reste, qu'un essai où je voulais seulement montrer les difficultés du problème dont je suis maintenant en état de présenter la solution.
Jacques HADAMARD, Préface

84,00 *
Référence: 220

rouge.jpg

Le premier Volume est consacré tout entier à la théorie ; dans les treize premiers Chapitres, elle est exposée complètement et sans faire appel à la théorie générale des fonctions ; dans le quatorzième, l'auteur retrouve les mêmes résultats en s'appuyant sur les principes de l'Analyse moderne. A-t-il voulu par là montrer, par un exemple éclatant, la puissance de cette analyse qui conduit, en si peu de pages, à un but que l'on ne pouvait atteindre sans elle qu'à l'aide de tant de génie et au prix de tant d'efforts ? Non, son but est tout différent et il l'explique lui-même dans sa Préface : ses premiers Chapitres n'ont pas été écrits pour les géomètres de profession ; sans doute, ils trouveront beaucoup à y apprendre et ils se réjouiront d'y rencontrer le spectacle de nombreuses difficultés vaincues et d'une sorte de gageure gagnée. Mais cette première partie de ce grand Ouvrage est avant tout destinée aux savants qui veulent devenir capables d'appliquer ces transcendances à la Mécanique et à la Physique, et qui ne sont pas au courant des travaux de Cauchy. Ils pourront y étudier la théorie des fonctions elliptiques réduite à une sorte de Trigonométrie, un peu plus compliquée que celle qu'on enseigne aux élèves d'élémentaires, et n'auront besoin que de connaître la définition des intégrales réelles.
Halphen a-t-il réussi à rendre cette doctrine abordable à des mathématiciens aussi peu avancés ? Je crois que oui, mais ce n'est pas à nous d'en juger.
Les divers développements en séries ou en produits tiennent une grande place dans ce premier Volume ; aucun, sans doute, n'est nouveau, mais ils sont tous reliés les uns aux autres d'une façon simple et exposés par des procédés élégants et ingénieux.
Je citerai surtout, page 405, la manière d'obtenir le développement de θ en produit en partant du développement en série ; elle est plus directe que celle que nous devons à Jacobi.
Le second Volume a pour objet les principales applications des fonctions elliptiques.
L'auteur commence par les applications mécaniques, et il traite successivement de la rotation d'un corps solide soustrait à l'action de toute force et tournant autour d'un point fixe, de celle d'un corps grave de révolution suspendu par un point de son axe, du mouvement d'un corps solide dans un liquide parfait indéfini en l'absence de force accélératrice, de la courbe élastique, de l'attraction de l'anneau elliptique de Gauss.
Viennent ensuite les applications géométriques aux lignes géodésiques des ellipsoïdes de révolution, auxquelles se rattachent divers problèmes pratiques de Géodésie, aux polygones de Poncelet, inscrits à une conique et circonscrits à une autre conique, aux cubiques planes et enfin aux biquadratiques gauches.
Puis les applications au Calcul intégral, la quadrature des intégrales pseudo-elliptiques, l'intégration de l'équation d'Euler, l'étude approfondie de l'équation de Lamé, si intimement liée à tant de problèmes importants de Physique et d'Astronomie, et enfin l'intégration de plusieurs classes étendues d'équations différentielles linéaires.
Henri POINCARÉ, Notice sur Halphen, Journal de l'École Polytechnique, 60e Cahier, 1890

205,00 *
Référence: 131

rouge.jpg

Hardy in his thirties held the view that the late years of a mathematician's life were spent most profitably in writing books ; I remember a particular conversation about this, and though we never spoke of the matter again it remained an understanding. The level below his best at which a man is prepared to go on working at full stretch is a matter of temperament ; Hardy made his decision and while of course he continued to publish papers his last years were mostly devoted to books ; whatever has been lost, mathematical literature has greatly gained. All his books gave him some degree of pleasure, but this one, his last, was his favourite. When embarking on it he told me that he believed in its value (as he well might), and also that he looked forward to the task with enthusiasm. He had actually given lectures on the subject at intervals ever since he return to Cambridge in 1931, and had at one time or another lectured on everything in the book except Chapter XIII.
The title holds curious of the past, and of Hardy's past. Abel wrote in 1828 : 'Divergent series are the invention of the devil and it is shameful to base on them any demonstration whatsoever.' In the ensuing period of critical revision they were simply rejected. Then came a time when I was found that something after all could be done about them. This is now matter of course, but in the early years of the century the subject, while in no way mystical or unrigorous, was regarded as sensational, and about the present title, now colourless there hung an aroma of paradox and audacity.
J. E. LITTLEWOOD, Preface

58,00 *
Référence: 338

rouge.jpg  violet.jpg

Aucune correspondance d'Hermite ne fut plus suivie ni plus abondante que celle qu'il avait commencée en 1882 avec un astronome adjoint de l'Observatoire de Leyde, Thomas Stieltjes. Le souci des mêmes problèmes et une même tournure d'esprit attirèrent Hermite vers Stieltjes, et une vive sympathie s'établit vite entre le jeune débutant et le vétéran de la Science. La mort de Stieltjes, arrivée prématurément en 1894, put seule interrompre cette correspondance, unique peut-être dans l'histoire de la Science. Relisant, après ce triste événement, la longue série de lettres du géomètre éminent pour qui il avait une si affectueuse estime, Hermite pensa qu'il importait à la mémoire de Stieltjes que ce témoignage de son activité et de son génie mathématique
 ne disparût point. Il était impossible de publier les lettres de Stieltjes sans publier celles d'Hermite, tant leur collaboration avait été intime ; les amis de Stieltjes eurent ici à vaincre quelque résistance d'Hermite, qui finit cependant par se décider à laisser paraître l'ensemble de la Correspondance.
Émile PICARD, Introduction

150,00 *
Référence: 343

rouge.jpg

« Ceux qui l'ont entendu, nous dit Émile Picard, garderont toujours le souvenir de cet enseignement incomparable. Quelles merveilleuses causeries, d'un ton grave que relevait par moment l'enthousiasme, où à propos de la question la plus élémentaire, il faisait surgir tout à coup d'immenses horizons et où, à côté de la Science d'aujourd'hui, on apercevait tout à coup la Science de demain. Jamais professeur ne fut moins didactique, mais ne fut plus vivant. »
« Ceux qui ont eu l'heureuse fortune d'être les élèves du grand géomètre, écrit  Paul Painlevé, ne sauraient oublier l'accent presque religieux de son enseignement, le frisson de beauté et de mystère qu'il faisait passer à travers son auditoire devant quelque admirable découverte ou devant l'inconnu. Hermite fut un professeur incomparable, sa parole saisissante ouvrait brusquement de larges horizons sur les régions de la Science ; elle suggérait à la curiosité et à l'attention les problèmes nouveaux et essentiels, mais surtout elle communiquait l'amour et le respect des idéales vérités. Dans l'inoubliable journée de son jubilé, en accueillant l'hommage d'admiration de tous les pays, l'illustre Analyste parle en termes pleins de noblesse de la corrélation étroite et secrète qui existe entre le sentiment de la justice et du devoir et l'intelligence de vérités absolues de la Géométrie. Cette corrélation semblait évidente quand on écoutait ses leçons. »
« Nos élèves, nous dit Jules Tannery en parlant de l'École Normale, continuent de recevoir à la Sorbonne un enseignement dont l'éclat n'a fait que grandir ; ils écoutent cette parole d'une éloquence si particulière où il y a du recueillement, de la solennité et une sorte de tendresse passionnée. Ils jouissent de cette lumière qui va jusqu'au fond des choses, qui les sépare et les réunit, qui en montre les liens les plus délicats, qui donne aux abstractions mathématiques la couleur et la vie. »
« C'est à la Sorbonne, écrit Émile Borel, que j'ai suivi les leçons d'Hermite ; c'est là que j'ai entendu cette parole si vivante exposer, avec respect à la fois et avec amour, les belles vérités de l'Analyse. C'était un grand prêtre de la divinité du Nombre qui nous en dévoilait les mystères redoutables et sacrés. Les questions les plus arides, les calculs en apparence les plus ingrats, se transfiguraient, tant il avait l'intuition de leurs secrètes beautés. Quelques uns peut-être ont eu, autant qu'Hermite le pouvoir de faire comprendre et admirer les Mathématiques ; nul n'a su les faire aimer aussi profondément que lui. »
Gaston DARBOUX, Notice historique sur Charles Hermite, 1905

69,00 *
Référence: 018

rouge.jpg

Chez Jordan l'élégance, haute et puissante, était généralité, clair enchaînement des idées, courageuse audace devant les difficultés, dédain des artifices.
Ces qualités maîtresses donnent à son Traité d'Analyse un attrait particulier. Jordan l'a d'ailleurs travaillé avec prédilection, utilisant au cours des éditions successives, comme seul, peut-être, il pouvait le faire, les travaux les plus récents et portant sur des sujets extrêmement variés. C'est ainsi que, dans la seconde édition, on trouve à la fois un exposé de théories sur les ensembles, dues à Cantor, et un véritable traité des fonctions elliptiques, le premier qui ait été construit en France à partir des idées de Weierstrass.
En 1912, il traite de la théorie toute nouvelle des équations intégrales et, de tous les travaux, il utilise surtout les plus récents, ceux de Goursat.
Si le Traité de Jordan est riche d'innovations, on y trouve aussi les trésors du passé et même ses souvenirs. Jordan est volontiers un novateur traditionaliste ; il conserve la division surannée en calcul différentiel et calcul intégral ; mais, comme ses réflexions lui ont fait reconnaître en l'intégrale la plus simple, la plus intuitive, la plus primitive de toutes les notions de l'analyse, il commence l'exposé du calcul différentiel par la définition de l'intégrale.
Henri LEBESGUE, Notice sur la vie et les travaux de Camille Jordan (1838-1922), 1923

135,00 *
Référence: 262
54,00 *
Référence: 243

rouge.jpg

Aucune des méthodes pratiquées ou proposées jusqu'à ce jour, pour suppléer à la méthode d'exhaustion des anciens, et pour la réduire en algorithme régulier, n'a paru à Lagrange réunir au degré désirable, l'exactitude et la simplicité requises dans les sciences mathématiques. Il a pensé néanmoins qu'il n'était pas impossible d'atteindre ce but important, et ses recherches à cet égard nous ont valu le grand ouvrage qu'il a publié sous le titre de Théorie des fonctions analytiques, contenant les principes du calcul différentiel, dégagés de toute considération d'infiniment petits, d'évanouissants, de limites et de fluxions, et réduits à l'analyse algébrique des quantités finies. Lagrange a de plus donné, sur le même sujet, un autre ouvrage considérable, intitulé, Leçons sur le calcul des fonctions, lequel est un commentaire et un supplément pour le premier.
Ces écrits sont marqués au coin du génie original et profond, auquel nous devions déjà le Calcul des variations et la Mécanique analytique ; mais comme ils doivent se trouver entre les mains de tous ceux qui veulent approfondir la science du calcul, je n'en dirai ici qu'un mot.
Afin de conserver, dans tout le cours de ses opérations, l'exactitude rigoureuse dont il s'est fait la loi de ne jamais s'écarter, Lagrange qui fait aussi usage des différentielles, sous une autre dénomination et sous une autre notation, les considère comme des quantités finies, indéterminées. En conséquence il ne néglige aucun terme, et prend ses différentielles, comme on le fait, dans le calcul aux différences finies. C'est à quoi il parvient par le théorème de Taylor, dont il fait la base de sa doctrine, et qu'il démontre directement par l'analyse ordinaire, tandis qu'avant lui, on ne l'avait encore démontré que par le secours même du calcul différentiel.
Lazare CARNOT, Réflexions sur la métaphysique du calcul infinitésimal, 2édition

75,00 *
Référence: 244

rouge.jpg

Les Leçons suivantes, destinées à servir de commentaire et de supplément à la première Partie de la Théorie des fonctions analytiques, offrent un cours d'Analyse sur cette partie du calcul qu'on nomme communément infinitésimale ou transcendante, et qui n'est proprement que le Calcul des fonctions.
Ceux qui ont étudié le Calcul différentiel pourront se former, dans ces Leçons, des notions simples et exactes de ce Calcul ; ils y trouveront aussi des formules et des méthodes nouvelles, ou qui n'ont pas encore été présentées avec toute la clarté et la généralité qu'on pourrait désirer.
Dans cette nouvelle Édition, on a retouché plusieurs endroits pour y mettre plus de clarté et de simplicité, et on a inséré différentes additions dont les principales se trouvent dans les Leçons dix-huitième, vingt et unième et vingt-deuxième. Cette dernière contient un traité complet du Calcul des variations.
Joseph-Louis LAGRANGE, Avertissement

81,00 *
Référence: 227

A reparaître

rouge.jpg

TOME I
Le texte de cette troisième édition a été revu avec le plus grand soin et nous lui avons apporté un grand nombre d'améliorations de détail. Toutefois nous ne signalerons ici que les modifications les plus importantes.
En ce qui concerne la partie élémentaire ou le grand texte, nous avons abandonné l'ancienne définition de la différentielle totale et adopté celle de Stolz. La supériorité de cette définition a été mise en lumière par les travaux de MM. S. Pierpont, Fréchet, et surtout W. H. Young. Elle est indiscutable : les théorèmes découlant plus directement des principes, la théorie de la différentiation des fonctions explicites et implicites devient plus serrée et, par le fait, plus satisfaisante. Signalons encore que nous avons précisé les démonstrations relatives aux applications géométriques en introduisant les hypothèses de continuité ou de dérivabilité au fur et à mesure de leur nécessité seulement.
Passons maintenant aux théories plus élevées données dans le petit texte. Nous avons rejeté dans l'introduction et simplifié la théorie de la mesure des ensembles qui embarrassait précédemment le chapitre relatif aux intégrales définies. Nous avons refondu tout entière la théorie de l'intégrale de Lebesgue, mais nous avons conservé le procédé que nous avions introduit précédemment pour remonter de la dérivée à la primitive. Plusieurs années d'expérience et nos recherches personnelles nous ont suffisamment montré ses avantages et sa fécondité. Aussi bien son utilité apparaîtra-t-elle dans deux paragraphes nouveaux, l'un consacré au problème du changement de variable dans une intégrale définie, problème qui paraît recevoir ici sa solution définitive, l'autre consacré à la recherche de la primitive d'une dérivée seconde généralisée, question fondamentale dans la théorie des séries de Fourier.
Charles-Jean de LA VALLÉE POUSSIN, Avertissement

TOME II
Dans cette seconde édition, toute la rédaction du tome II a subi des modifications plus ou moins profondes, mais la plus importante provient de l'introduction des intégrales multiples de M. Lebesgue. Nous avons exposé cette théorie en nous guidant sur les Mémoires fondamentaux de l'auteur et nous avons été amené à traiter une question nouvelle qui en fournit d'intéressantes applications, celle des développements de fonctions en séries de polynomes. En outre, la théorie des séries trigonométriques, qui doit encore à M. Lebesgue ses plus importants progrès, a été complètement refondue et mise au niveau des connaissances actuelles.
Charles-Jean de LA VALLÉE POUSSIN, Préface

Référence: 072

rouge.jpg  bleu.jpg

Ce livre, simple et maniable, met au point une question apparue dans la Science ayec Hugoniot, brillamment poursuivie par M. Jacques Hadamard et aboutissant actuellement à la Mécanique ondulatoire, à la lumière ondulée et photonique, aux travaux développés en France par le génie de M. Louis de Broglie. Un coup d'oeil sur l'index placé à la fin du volume rappelle notamment Bateman, surtout Cauchy, Charpit, Darboux, Debye, Dirac, Einstein, Fermi. Fresnel, Goursat, Heisenberg, Jacobi, Janet, Maxwell, Pfaff, Planck, Riemann, Schrödinger, Volterra. Désordre alphabétique qui, cependant, rapproche toute la Physique théorique des équations aux dérivées partielles du second et du premier ordre. Car c'était véritablement un scandale de la Physique mathématique classique que de voir celle-ci ne reposer que sur des équations du second ordre; il restait à y incorporer l'équation de Jacobi, ce qui donna précisément naissance à la Mécanique des ondes.
Comme le fait expressément et excellemment remarquer M. Levi-Civita, la dualité des ondes et des corpuscules résulte de dualités analytiques fondamentales et simples, notamment de celle des caractéristiques et des bicaractéristiques. Ces notions ne sont pas nouvelles; il faut, pour la plus grande partie, les faire remonter à Cauchy. Une fois de plus, l'analyse abstraite aura pris, tout à coup, une signification phénoménale.
M. Levi-Civita est très large dans sa définition du mouvement ondulatoire. L'onde est la propagation d'une perturbation, parfois avec vitesse très grande, qui peut cependant ne dépendre que de petits mouvements, au sens qu'ont ces deux derniers mots dans la Mécanique classique. Autre raison pour profiter de Lagrange, d'Hamilton et de Jacobi dans les théories ondulatoires.
Les ondes ne vont pas sans conditions de compatibilité, les unes géométrico-cinématiques, les autres dynamiques. Ces dernières donnent des jeux d'opérateurs,un déterminant qui, annulé, conduit à l'équation aux dérivées partielles des variétés caractéristiques. Signalons encore les impossibilités relatives aux fluides visqueux et le transport de la notion d'onde, par discontinuité transversale, dans la théorie de Maxwell. Certes l'optique ondulatoire et la théorie électromagnétique ont, depuis longtemps, des représentations d'ondes, généralement trigonométriques mais ce n'était pas sur de tels points qu'il y avait intérêt à revenir. Il fallait montrer plutôt comment l'onde discontinuité s'introduisait dans ces disciplines et c'est, au fond, fort simple, les équations générales de la dynamique des milieux continus étant de très proches parentes de celles de Maxwell.
Adolphe BUHL, L'Enseignement Mathématique, Vol. 30 (1931)

21,00 *
Référence: 039

rouge.jpg

Dans cet Ouvrage sont exposées quelques méthodes pour la résolution des questions concernant les propriétés du mouvement et, en particulier, de l'équilibre, qui sont connues sous les dénominations de stabilité et d'instabilité.
[...]
L'essai unique, autant que je sache, de solution rigoureuse de la question appartient à M. Poincaré, qui, dans le Mémoire remarquable sous bien des rapports Sur les courbes définies par les équations différentielles, et en particulier, dans ses deux dernières Parties, considère des questions de stabilité relatives au cas des systèmes d'équations différentielles du second ordre et s'arrête aussi à quelques questions voisines, se rapportant à des systèmes du troisième ordre.
Bien que M. Poincaré se borne à des cas très particuliers, les méthodes dont il se sert permettent des applications beaucoup plus générales et peuvent encore conduire à beaucoup de nouveaux résultats. C'est ce qu'on verra par ce qui va suivre, car, dans une grande partie de mes recherches, je me suis guidé par les idées développées dans le Mémoire cité.
Le problème que je me suis posé, en entreprenant la présente étude, peut être formulé ainsi : indiquer les cas où la première approximation résout réellement la question de stabilité, et donner des procédés qui permettraient de la résoudre, au moins dans certains cas, quand la première approximation ne suffit plus.
Pour arriver à quelques résultats, il était tout d'abord nécessaire de faire certaines hypothèses, relativement aux équations différentielles considérées.
La plus simple, et en même temps celle qui conviendrait aux applications les plus importantes et les plus intéressantes, consisterait en ce que les coefficients dans les développements des seconds membres de ces équations sont des quantités constantes. L'hypothèse plus générale que ces coefficients sont des fonctions périodiques du temps correspondrait aussi à des questions intéressantes très nombreuses.
C'est dans ces deux hypothèses que je traite principalement la question.
Du reste, je touche en partie le cas plus général où lesdits coefficients sont des fonctions quelconques du temps qui ne dépassent jamais, en valeurs absolues, certaines limites.
Alexandre LIAPOUNOFF, Préface

35,00 *
Référence: 298

rouge.jpg

C'est à Georges Bruhat que remonte l'idée première de ce livre. Il avait été frappé par le fait qu'il n'existait dans la littérature scientifique française aucun ouvrage de Physique Mathématique analogue aux traités classiques de Courant et Hilbert ou de Frank et Misès et il pensait aussi que ces traités n'étaient pas construits de manière à être pleinement accessibles aux physiciens théoriciens ou expérimentateurs. C'est alors qu'il me demanda s'il me serait possible de rédiger un ouvrage d'un niveau relativement élémentaire permettant aux physiciens de s'initier aux grandes techniques mathématiques de la physique moderne.
Le présent volume a été conçu pour répondre au moins partiellement à ce but. Il diffère de ce qui existait antérieurement dans la littérature étrangère sur deux points essentiels. D'une part son niveau est élémentaire : à l'exception de quelques paragraphes, il peut être lu par un lecteur ayant des connaissances solides relativement au programme des classes de Mathématiques spéciales ou des cours de Mathématiques générales. D'autre part il s'efforce de familiariser le lecteur aussi bien avec l'algèbre des opérateurs linéaires et des matrices qu'avec l'algèbre tensorielle si utile pour la pleine compréhension de tant de théories physiques.
Il est peut-être inutile de faire observer qu'il n'est point de Mathématiques « sans larmes » à l'usage exclusif des physiciens et que, si je me suis efforcé de choisir et coordonner celles des théories mathématiques qui peuvent être utiles aux physiciens, il m'était impossible de renoncer dans leur exposé à cette rigueur sans laquelle il n'est plus de science ni mathématique ni physique.
André LICHNEROWICZ, Avant-Propos

60,00 *
Référence: 060

rouge.jpg

Les progrès réalisés depuis quelques années dans la théorie des fonctions analytiques ont fait ressortir combien sont toujours fécondes et efficaces les méthodes ingénieuses créées par Cauchy, parmi lesquelles il convient de citer en premier lieu le Calcul des résidus. Il n'est donc pas sans intérêt de revenir maintenant sur ce Calcul classique et d'étudier systématiquement le rôle qu'il joue dans la théorie des fonctions proprement dite. C'est ce que nous avons tâché de faire dans ce petit Livre, en vue de faciliter dans une certaine mesure l'accès des parties modernes de l'Analyse.
Dans le premier Chapitre, nous passons rapidement en revue les principes et théorèmes généraux dont nous aurons à faire usage, en cherchant d'ailleurs à varier un peu ce sujet tant de fois exposé. Ayant fait une étude détaillée des travaux de Cauchy, y compris quelques Mémoires peu répandus que M. Mittag-Leffler a généreusement mis à notre disposition, nous avons tenu à relever les dates et à faire ressortir la portée de ses découvertes, ce qui nous a paru d'autant plus nécessaire qu'on rencontre souvent, dans la littérature, des indications assez peu exactes à ce sujet.
Le deuxième Chapitre contient diverses applications du Calcul des résidus, dues pour la plupart à Cauchy. Cependant les limites restreintes imposées à cet Ouvrage ne nous ont permis de donner qu'une idée très imparfaite du parti que Cauchy avait tiré lui-même de son Calcul. Parmi les applications faites par lui qui n'ont pu trouver place dans ce Chapitre, nous devons signaler surtout la méthode qu'il a employée pour obtenir des séries analogues à celle de Fourier, méthode dont on trouvera une très belle exposition au Tome II du Traité d'Analyse de M. Picard.
Le troisième Chapitre est consacré aux formules sommatoires. Le Calcul des résidus, appliqué systématiquement, permet de rattacher toutes ces formules, avec leurs conséquences multiples, a un même principe simple et naturel, et contribue ainsi à mettre plus d'ordre et d'unité dans cette partie si intéressante de l'Analyse.
Comme application de ces formules, nous en déduisons, au quatrième Chapitre, une grande partie des expressions et des développements trouvés, à différentes époques et par différentes méthodes, pour la fonction gamma et pour la fonction de Riemann. Ce Chapitre contient aussi quelques résultats nouveaux relatifs à la série de Stirling.
Enfin, au dernier Chapitre, nous donnons un aperçu de quelques résultats modernes relatif au prolongement analytique et à l'étude asymptotique des fonctions définies par un développement de Taylor, en insistant surtout sur certains théorèmes généraux riches en applications et qui semblent présenter un caractère définitif. Ici encore nous avons dû être assez bref et laisser de côté bien des questions intéressantes, mais nous espérons néanmoins que notre exposition ne sera pas sans utilité pour ceux qui désirent approfondir le sujet.
Nous tenons à exprimer ici nos vifs remerciements à M. Émile Borel, qui nous a invité à écrire ce Livre et qui, ensuite, en revoyant les épreuves, a bien voulu nous assister de ses précieux conseils.
Ernst LINDELÖF, Préface

27,00 *
Référence: 104

rouge.jpg  violet.jpg

ARTICLES :

II-1 : PRINCIPES FONDAMENTAUX DE LA THÉORIE DES FONCTIONS
A. Pringsheim - J. Molk

II-2 : RECHERCHES CONTEMPORAINES SUR LA THÉORIE DES FONCTIONS
Rédigé sous la direction de É. Borel
LES ENSEMBLES DE POINTS
L. Zoretti
INTÉGRATION ET DÉRIVATION
P. Montel
DÉVELOPPEMENTS EN SÉRIES
M. Fréchet

II-3 : CALCUL DIFFERENTIEL
A. Voss - J. Molk

30,00 *
Référence: 105

rouge.jpg  violet.jpg

ARTICLES :

I-7 : ANALYSE ALGÉBRIQUE
A. Pringsheim - G. Faber - J. Molk

II-8 : FONCTIONS ANALYTIQUES *
W.F. Osgood - P. Boutroux - J. Chazy

* La fin de l'article n'a pas été publiée en raison de la guerre.

21,00 *
Référence: 106

rouge.jpg  violet.jpg

ARTICLES :

II-15 : EXISTENCE DE L'INTÉGRALE GÉNÉRALE
DÉTERMINATION D'UNE INTÉGRALE PARTICULIÉRE PAR SES VALEURS INITIALES
P. Painlevé

II-16 : MÉTHODES D'INTÉGRATION ÉLÉMENTAIRES
ÉTUDE DES ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES AU POINT DE VUE FORMEL
E. Vessiot  

28,00 *
Référence: 107

rouge.jpg  violet.jpg

ARTICLES :

II-21 : PROPRIÉTÉS GÉNÉRALES DES SYSTÉMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES.
ÉQUATIONS LINÉAIRES DU PREMIER ORDRE.
E. von Weber - G. Floquet

II-22 : ÉQUATIONS NON LINÉAIRES DU PREMIER ORDRE. ÉQUATIONS D'ORDRE PLUS GRAND QUE UN.
E. von Weber - É. Goursat

II-23
GROUPES DE TRANSFORMATIONS CONTINUS. *
H. Burkhardt - L. Maurer - E. Vessiot

* La fin de l'article n'a pas été publiée en raison de la guerre.

28,00 *
Référence: 108

rouge.jpg  violet.jpg

ARTICLES :

II-26 : ÉQUATIONS ET OPÉRATIONS FONCTIONNELLES.
S. Pincherle

II- 27 : INTERPOLATION TRIGONOMÉTRIQUE.
H. Burkhardt - E. Esclangon

II-28 : FONCTIONS SPHÉRIQUES.
A. Wangerin - A. Lambert

II-28a : GÉNÉRALISATIONS DIVERSES DES FONCTIONS SPHÉRIQUES.
P. Appell - A. Lambert  

37,00 *
Référence: 109

rouge.jpg  violet.jpg

ARTICLE :

II-31 : CALCUL DES VARIATIONS
A. Kneser - E. Zermelo - H. Hahn - M. Lecat

34,00 *
Référence: 225

rouge.jpg

On sait que Jacques Bernoulli dont le nom est indissolublement lié au Calcul des probabilités par la loi des grands nombres, a introduit dans son fameux ouvrage posthume sur l'Art de conjecturer, Ars conjectandi, publié en 1713, une suite infinie de nombres rationnels particuliers devenus célèbres en analyse mathématique. Le grand Euler les a retrouvés à son tour et popularisés sous le nom de nombres de Bernoulli, se servant de l'initiale de ce nom pour les désigner, et sa notation a acquis droit de cité en mathématiques.
Une pléiade de mathématiciens, parmi lesquels les plus grands géomètres et calculateurs, les Cauchy, Gauss, Hermite et Kronecker, les Jacobi, Lipschitz, Lucas, de Moivre, les Raabe, Saalschütz, von Staudt, Stern, Sylvester, etc., se sont occupés de ces curieux nombres, de sorte qu'il y a une littérature assez étendue sur ce sujet spécial. M. Niels Nielsen de l'Université de Copenhague, à qui l'on doit plusieurs ouvrages importants et de nombreuses monographies sur la Théorie des fonctions, était bien placé pour coordonner ce que l'on sait des nombres de Bernoulli, puisqu'il a mis depuis quelques années sa vaste érudition mathématique plus spécialement au service de la Théorie des nombres.
[...]
Les indications bibliographiques sont très nombreuses et exactes. Le lecteur trouve dans le traité lui-même toutes les définitions et tous les théorèmes nécessaires à la compréhension entière du texte. C'est le Traité le plus complet et le meilleur que je connaisse sur les nombres de Bernoulli et les domaines connexes, et il convient d'en féliciter M. Niels Nielsen.
Louis-Gustave DU PASQUIER, L'Enseignement Mathématique 23 (1923)

62,00 *
Référence: 075

rouge.jpg

En publiant ce Traité d'Analyse, j'ai pour but principal de développer la partie de mon cours de la Faculté des Sciences, relative à la théorie des équations différentielles. Cet Ouvrage sera donc surtout un traité général sur la théorie des équations différentielles à une ou plusieurs variables. Je n'ai cependant pas cru devoir adopter ce dernier titre, et cela pour deux raisons.
D'abord, quelques uns de mes auditeurs ayant bien voulu exprimer le regret qu'une partie de mon cours lithographié de 1886-1887 ne fût pas reproduite, je me suis décidé à publier un Volume préliminaire commençant par les parties les plus élémentaires du Calcul intégral. De cette façon, je ne suppose chez le lecteur aucune autre connaissance que les éléments du Calcul différentiel aujourd'hui classiques dans les cours de Mathématiques spéciales.
Un autre motif, d'un caractère tout scientifique, m'engageait à garder le titre un peu vague de Traité d'Analyse , c'est que la théorie des équations différentielles est intimement liée à plus d'une autre théorie qu'il nous faudra approfondir. Pour ne citer qu'un exemple, l'étude préliminaire des fonctions algébriques est indispensable, quand on veut s'occuper de certaines classes d'équations différentielles. Nous ne nous bornerons donc pas strictement à l'étude des équations différentielles, nous rayonnerons autour de ce centre.
Émile PICARD, Introduction de la première édition

135,00 *
Référence: 098

rouge.jpg

Une théorie complète des fonctions définies par les équations différentielles serait d'une grande utilité dans un grand nombre de questions de Mathématiques pures ou de Mécanique. Malheureusement, il est évident que dans la grande généralité des cas qui se présentent on ne peut intégrer ces équations à l'aide des fonctions déjà connues, par exemple à l'aide des fonctions définies par les quadratures. Si l'on voulait donc se restreindre aux cas que 1'on peut étudier avec des intégrales définies ou indéfinies, le champ de nos recherches serait singulièrement diminué, et l'immense majorité des questions qui se présentent dans les applications demeureraient insolubles.
Il est donc nécessaire d'étudier les fonctions définies par des équations différentielles en elles-mêmes et sans chercher à les ramener à des fonctions plus simples, ainsi qu'on a fait pour les fonctions algébriques, qu'on avait cherché à ramener à des radicaux et qu'on étudie maintenant directement, ainsi qu'on a fait pour les intégrales de différentielles algébriques, qu'on s'est efforcé longtemps d'exprimer en termes finis.
Rechercher quelles sont les propriétés des équations différentielles est donc une question du plus haut intérêt. On a déjà fait un premier pas dans cette voie en étudiant la fonction proposée dans le voisinage d'un des points du plan. Il s'agit aujourd'hui d'aller plus loin et d'étudier celte fonctiondans toute l'étendue du plan. Dans cette recherche, notre point de départ sera évidemment ce que l'on sait déjà de la fonction étudiée dans une certaine région du plan.
L'étude complète d'une fonction comprend deux parties: 
1° Partie qualitative (pour ainsi dire), ou étude géométrique de la courbe définie par la fonction ;
2° Partie quantitative, ou calcul numérique des valeurs de la fonction.
Ainsi, par exemple, pour étudier une équation algébrique, on commence par rechercher, à l'aide du théorème de Sturm, quel est le nombre des racines réelles, c'est la partie qualitative, puis on calcule la valeur numérique de ces racines, ce qui constitue l'étude quantitative de l'équation. De même, pour étudier une courbe algébrique, on commence par construire cette courbe, comme on dit dans les cours de Mathématiques spéciales, c'est-à-dire qu'on cherche quelles sont les branches de courbes fermées. les branches infinies, etc. Après cette étude qualitative de la courbe on peut en déterminer exactement un certain nombre de points.
C'est naturellement par la partie qualitative qu'on doit aborder la théorie de toute fonction et c'est pourquoi le problème qui se présente en premier lieu est le suivant :
Construire les courbes définies par des équations différentielles. 
Cette étude qualitative, quand elle sera faite complètement, sera de la plus grande utilité pour le calcul numérique de la fonction et elle y conduira d'autant plus facilement que l'on connaît déjà des séries convergentes qui représentent la fonction cherchée dans une certaine région du plan, et que la principale difficulté qui se présente est de trouver un guide sûr pour passer d'une région où la fonction est représentée par une série à une autre région du plan où elle est exprimable par une série différente.
D'ailleurs, cette étude qualitative aura par elle-même un intérêt du premier ordre. Diverses questions fort importantes d'Analyse et de Mécanique peuvent en effet s'y ramener. Prenons pour exemple le problème des trois corps : ne peut-on pas se demander si l'un des corps restera toujours dans une certaine région du ciel ou bien s'il pourra s'éloigner indéfiniment ; si la distance de deux des corps augmentera, ou diminuera à l'infini, ou bien si elle restera comprise entre certaines limites ? Ne peut-on pas se poser mille questions de ce genre, qui seront toutes résolues quand on saura construire qualitativement les trajectoires des trois corps ? Et si l'on considère un nombre plus grand de corps, qu'est-ce que la question de l'invariabilité des éléments des planètes, sinon une véritable question de Géométrie qualitative, puisque, faire voir que le grand axe n'a pas de variations séculaires, c'est montrer qu'il oscille constamment entre certaines limites ?
Tel est le vaste champ de découvertes qui s'ouvre devant les géomètres. Je n'ai pas eu la prétention de le parcourir tout entier, mais j'ai voulu du moins en franchir les frontières, et je me suis restreint à un cas très particulier, celui qui se présente d'abord
tout naturellement, c'est-à-dire à l'étude des équations différentielles du premier ordre et du premier degré.
Henri POINCARÉ, Introduction

75,00 *
Référence: 171

rouge.jpg

Quelqu'un demandait un jour à J.-B. Dumas, à propos de Claude Bernard : « Que pensez-vous de ce grand physiologiste ? », et Dumas répondit : « Ce n'est pas un grand physiologiste, c'est la Physiologie elle-même. » On pourrait dire pareillement de Henri Poincaré qu'il ne fut pas seulement un grand mathématicien, mais la Mathématique elle-même.
Dans l'histoire des Sciences mathématiques, peu de mathématiciens ont eu, comme lui, la force de faire rendre à l'esprit mathématique tout ce qu'il était à chaque instant capable de donner. En Mathématiques pures sa puissance d'invention fut prodigieuse, et l'on reste confondu devant la maîtrise avec laquelle il savait forger l'outil le mieux approprié dans toutes les questions qu'il attaquait.
Poincaré ne fut étranger à aucune des sciences parvenues à un stade assez avancé pour être susceptible de prendre, au moins dans certaines de leurs parties, une forme mathématique. Il a été en particulier un grand critique des théories de la Physique moderne, habile à les comparer et à mettre en évidence leur véritable origine, aimant aussi à signaler leurs points faibles et leurs contradictions.
[...]
Ce qui caractérise le génie mathématique de Poincaré, c'est sa puissance à embrasser d'emblée les questions dans toute leur généralité et à créer de toutes pièces l'instrument analytique permettant l'étude des problèmes posés. D'autres, et c'est ainsi qu'opèrent la majorité des chercheurs, commencent par s'enquérir de ce qui a été fait dans la voie qu'ils veulent explorer ; la documentation est pour eux un travail préliminaire. Poincaré s'attarde rarement à étudier les travaux antérieurs. Tout au plus, parcourt-il rapidement quelques-uns d'entre eux ; de vagues indications lui permettent de retrouver des Chapitres entiers d'une théorie.
Émile PICARDL'œuvre de Henri Poincaré, Annales scientifiques de l'É.N.S., 3e série, tome 30 (1913)

 

80,00 *
Référence: 172

rouge.jpg

Au lendemain de la mort prématurée d'Henri Poincaré, ses confrères, ses amis, ses admirateurs ont été unanimes à penser que notre pays devait rendre au géomètre qu'il venait de perdre le même hommage qu'il avait rendu aux plus grands : à Lagrange, à Laplace, à Fourier, à Cauchy. Le Ministère de l'Instruction publique a décidé de publier sans tarder les Œuvres mathématiques d'Henri Poincaré.
[...]
Le plan et le contenu des divers Volumes ont été complètement arrêtés. Dans le désir de provoquer des recherches, j'ai cru devoir commencer par le Tome II, parce qu'il contient les travaux les plus importants de la jeunesse de Poincaré, ceux qui concernent les fonctions fuchsiennes. L'hommage ainsi rendu à un savant illustre se doublera, je l'espère, d'un service rendu aux géomètres.
Gaston DARBOUX, Préface

93,00 *
Référence: 173

rouge.jpg

L'intégration des équations différentielles et aux dérivées partielles est restée jusqu'ici le problème central de la mathématique moderne. Elle en restera vraisemblablement encore l'un des problèmes capitaux, même si la Physique poursuit vers le discontinu l'évolution qui se dessine à l'heure actuelle.
La théorie des équations différentielles fut aussi la première à attirer l'attention de Poincaré. Elle fait l'objet de sa Thèse (1879).
Notons cependant que, sous l'influence du maître qui gouverna la génération précédente, j'ai nommé Hermite, le débutant ne craignait pas de suivre presque au même moment une voie pour ainsi dire opposée à la première, celle de l'Arithmétique.
La Thèse de Poincaré contient déjà sur les équations différentielles un résultat d'une forme remarquable, destinée à être plus tard pour lui un puissant levier dans ses recherches de mécanique céleste. Dès ce premier travail, il était, d'autre part, conduit à perfectionner le principal outil dont se fût servi jusque là, la théorie des équations différentielles, outil qu'il allait utiliser mieux que qui que ce soit, en même temps que le premier, il allait enseigner à s'en passer : la théorie des fonctions analytiques.
Celle-ci allait, presque immédiatement après, lui devoir une de ses plus belles conquêtes : c'est en 1880 que les fonctions fuchsiennes vinrent désigner Poincaré à l'attention et à l'admiration de tous les géomètres.
Jacques HADAMARDL'œuvre mathématique de Poincaré, Acta Mathematica, Band 38 (1921)

90,00 *
Référence: 174

A reparaître

rouge.jpg

Le présent volume des « Œuvres de Henri Poincaré » contient tous les mémoires ou notes relatifs à la théorie générale des fonctions analytiques d'une ou plusieurs variables, et à la théorie des fonctions abéliennes ou connexes. On y a joint quelques notes brèves sur les séries trigonométriques, préliminaires aux travaux d'Astronomie qui seront publiés dans les tomes VII et VIII.
M. Georges Valiron, professeur à la Faculté des Sciences de Paris, avec sa compétence reconnue dans la théorie des fonctions analytiques, a établi le manuscrit définitif et ajouté une série de notes, destinées à orienter le lecteur vers les développements que ces travaux de Poincaré ont reçus jusqu'ici.
Gaston JULIA, Préface

Référence: 076

rouge.jpg

L'œuvre de Bernhard Riemann est la plus belle et la plus grande de l'Analyse à notre époque : elle a été consacrée par une admiration unanime, elle laissera dans la Science une trace impérissable. Les géomètres contemporains s'inspirent dans leurs travaux de ses conceptions, ils en révèlent chaque jour par leurs découvertes l'importance et la fécondité. L'illustre géomètre a ouvert dans l'Analyse comme une ère nouvelle qui porte l'empreinte de son génie.
Charles HERMITE, Préface

65,00 *
Référence: 092

rouge.jpg

Le premier Chapitre de cette sixième édition renferme les premiers éléments de la théorie des fonctions circulaires ; le deuxième est relatif à la construction et à l'usage des Tables trigonométriques ; les deux Chapitres suivants contiennent la Trigonométrie proprement dite, c'est à dire l'ensemble des principes sur lesquels repose la résolution des triangles rectilignes ou sphériques. Ces quatre Chapitres constituent la partie élémentaire de notre Ouvrage. Dans le Chapitre cinquième, nous donnons un complément assez étendu de la théorie des fonctions circulaires, si utile dans les parties élevées des Mathématiques. Enfin le sixième Chapitre, qui termine l'Ouvrage, est surtout consacré au développement des solutions trigonométriques fondées sur l'emploi des séries ; ces solutions se rapportent à différents cas qui se présentent fréquemment dans l'Astronomie et dans le Géodésie, et pour lesquels les méthodes générales deviennent insuffisantes.
Joseph-Alfred SERRET, Avertissement

 

35,00 *
*

-5%
 

31 - 60 sur 70 résultats