Imprimer

Analyse

 

rouge.jpg

Il est difficile de séparer complètement les domaines de l'algèbre et de l'analyse. En effet dans celle-ci la notion de limite est reine. On peut toutefois remarquer que l'analyse est consacrée aux ensembles possédant une structure très voisine de celle de R, par exemple comme les espaces vectoriels normés. Historiquement, l'analyse commença d'abord à explorer l'ensemble des nombres réels, puis des nombres complexes. Les théorèmes d'analyse sont la généralisation des résultats obtenus dans l'étude des dérivées et des intégrales, qui constituent le calcul différentiel et intégral, encore aujourd'hui l'un des monuments des mathématiques et de la science de l'ingénieur, d'une importance incomparable dans la « mathématisation » du monde actuel. Pendant tout le XIXe siècle, on a pu croire que les mathématiques tout entières deviendraient une extension de cette théorie des fonctions. Les structures de l'analyse sont à la fois algébriques et topologiques.
Si l'algèbre semble avoir remplacé l'analyse dans ce rôle primordial, il est juste de dire que l'étude des limites (ou encore des infiniments petits) reste, non seulement l'outil irremplaçable de la mathématique appliquée sous toutes ses formes, mais aussi un champ de recherches largement ouvert. Simplement doit-on faire remarquer que l'analyste moderne se place d'emblée dans des espaces beaucoup plus riches que l'espace traditionnel des réels, mais s'il obtient ainsi des résultats d'une portée théorique beaucoup plus étendue, l'esprit même de sa démarche est identique à celui d'un Legendre ou d'un Poincaré.

André WARUSFEL, Dictionnaire raisonné des Mathématiques, 1966, Éditions du Seuil

 


Affichage par page
Trier par
61 - 70 sur 70 résultats
Référence: 264

A reparaître

Référence: 306

rouge.jpg  bleu.jpg

C'est à Hamilton qu'était réservée la découverte de l'emploi de √-1 comme d'une réalité géométrique, apte à représenter une direction quelconque dans l'espace, mais non liée à une seule d'entre elles ; et sur cette application il fonda la méthode très élégante et en même temps très puissante connue maintenant sous le nom de Calcul des Quaternions.
Tandis que les systèmes différents du sien font choix d'une direction particulière dans l'espace pour la faire servir à la représentation des quantités réelles, réservant les expressions imaginaires pour la représentation de toutes les directions situées en dehors de la première, Hamilton trouve qu'il peut rendre imaginaires, ou plutôt géométriquement réelles, toutes les directions sans aucune exception, et par ce moyen il donne à son calcul la faculté de traiter l'espace d'après des règles qui sont les mêmes, quelle que soit l'orientation des constructions relativement aux différentes directions dans l'espace.
Nous verrons en effet que la méthode des Quaternions est indépendante d'un emploi quelconque d'axes de coordonnées ou d'autres directions données a priori ; au contraire, elle ne prend pour repères que les seules lignes dont la définition fait partie des problèmes à traiter.
[...]
Nous consacrerons la dernière Partie de cet Ouvrage à la résolution de quelques questions de Physique mathématique, dans le but de montrer avec quelle facilité la méthode des Quaternions s'applique à des problèmes de ce genre.
Nous sommes convaincu que c'est dans le domaine des questions de Physique que la méthode des Quaternions est appelée à rendre de vrais services, mieux encore que dans les problèmes de la Géométrie et de la Cinématique.
Nous ne serons peut-être contredit que par ceux des mathématiciens pour lesquels la théorie des transversales et celle des faisceaux anharmoniques ont un charme auquel nous ne sommes pas sensible. Il est clair que nous ne pouvons pas donner ici des applications pour toutes les branches de la Physique mathématique, ni même pousser nos investigations bien loin dans l'une quelconque de ces branches ; cet Ouvrage n'est pas destiné à enseigner les résultats de la Physique, mais seulement à montrer, par des exemples, combien la méthode des Quaternions semble expressément inventée pour s'adapter aux exigences des problèmes qui se présentent dans cette Science.
Peter-Guthrie TAIT, Extraits de l'Ouvrage

120,00 *
Référence: 255

rouge.jpg  bleu.jpg

L'unité étroite de la science et de la vie, de la théorie et de la pratique a été le trait caractéristique de l'œuvre de nombreux savants russes. P. L. Tchebychef, fondateur de la grande école de mathématiques de Pétersbourg, écrivait :
« Le rapprochement de la théorie et de la pratique donne les résultats les plus bienfaisants et la pratique n'est pas la seule à en profiter : les sciences elles-mêmes se développent sous son influence : elle leur ouvre de nouveaux objets d'études ou bien de nouveaux aspects dans des matières depuis longtemps connues. »
En même temps, on procédait à une élaboration approfondie des problèmes qui avaient, tout au moins à cette époque, une importance théorique et qui étaient nécessaires pour le progrès de la science elle-même. Ceci se rapporte également à Tchebychef et à ses émules. Si les recherches de Tchebychef dans la théorie des polynômes d'approximation des fonctions ont grandi en liaison intime avec l'étude de la théorie des mécanismes, ses travaux sur la théorie des nombres avaient un caractère abstrait.
René TATON, Histoire générale des sciences, t. III, La Science contemporaine, vol. 1, Le XIXe siècle, PUF, 1961

215,00 *
Référence: 061

rouge.jpg

Comme certaines recherches sur les propriétés des solutions des équations différentielles analytiques nécessitent la connaissance de quelques points de la théorie des fonctions algébriques, j'ai été amené à consacrer deux chapitres à cette théorie et à celle des intégrales abéliennes. Cela m'a permis de donner la démonstration de quelques théorèmes relatifs aux courbes algébriques planes, qui ne sont plus enseignés dans les cours de mathématiques spéciales, et de mettre ainsi en évidence, une fois de plus, l'unité des mathématiques.
Trois sortes d'équations définissant des fonctions sont ainsi étudiées dans ce livre : les équations algébriques à deux variables, les équations différentielles et les équations aux dérivées partielles. Toutes ces équations sont des équations fonctionnelles. Ainsi se trouve justifiée la première partie du titre donné à ce volume : équations fonctionnelles. Quant aux applications, ce sont les applications de l'analyse à la géométrie, y compris quelques applications du théorème d'Abel sur les intégrales abéliennes.
Georges VALIRON, Préface

71,00 *
Référence: 320

rouge.jpg

Mes premières études sur les fonctions qui dépendent d'autres fonctions et les fonctions de lignes, ou d'un nombre infini et continu de variables, remontent à l'année 1883. Je suis parti du calcul des variations. Mais je n'ai publié des travaux d'une manière systématique sur ce sujet qu'à partir de 1887. Cependant, en 1884, j'ai communiqué une Note à l'Académie des Lincei où j'ai relié au calcul des variations les équations intégrales à noyau symétrique.
J'ai interrompu les publications sur cette matière pendant les années 1891-1895 où j'ai dû m'occuper d'autres recherches, et je n'ai recommencé qu'en 1896 par les Notes de l'Académie de Turin sur l'inversion des intégrales définies.
Dès la première Note, j'ai envisagé les équations intégrales comme le cas limite d'équations algébriques linéaires. C'est par cette considération que je suis arrivé à l'emploi des déterminants infinis pour l'inversion des intégrales définies (résolution des équations intégrales). J'ai parlé de cet emploi dans des conversations privées à Zurich en 1897. J'ai eu aussi l'occasion de parler de cet emploi dans une conférence que j'ai faite en 1898 sur la question des oscillations des liquides pesants (Problème des Seiches).
Les mêmes conceptions relatives au passage du fini à l'infini m'ont guidé dans l'étude des équations intégro-différentielles et dans celle des fonctions permutables. J'en ai commencé l'exposition en 1909. On trouvera un premier aperçu de ces études dans le dernier Chapitre de ces Leçons.
Vito VOLTERRA, Préface

38,00 *
Référence: 322

rouge.jpg

Les nouvelles équations fonctionnelles que M. Vito Volterra a, le premier, considérées et qu'il a dénommées équations intégro-différentielles aux dérivées partielles (1), sont susceptibles de jouer un rôle de la plus haute importance, ainsi que l'a fait voir l'illustre géomètre, en Mécanique et en Physique Mathématique.
En Analyse pure, elles présentent un intérêt tout spécial en raison de leur grand degré de généralité: elles contiennent en effet, comme l'on sait, sous des signes d'intégration (simple ou multiple) non seulement la fonction inconnue - comme cela a lieu pour les équations intégrales - mais encore certaines de ses dérivées partielles de divers ordres par rapport aux variables indépendantes.
De ce fait elles renferment, à titre de cas particuliers, les équations intégrales à une ou plusieurs variables ainsi que les équations différentielles ordinaires - ou aux dérivées partielles - sans d'ailleurs leur être réductibles en général (2).
Par suite, tout résultat les concernant s'applique automatiquement et directement à ces derniers types d'équations.
Or une équation différentielle, par exemple, se montre parfois plus maniable après qu'elle a été transformée par des intégrations convenables et mise sous forme d'une équation intégrale ou intégro-différentielle, comme si l'intégration était en quelque sorte - suivant une remarque de M. Hadamard - un instrument de calcul plus puissant et plus commode que la différentiation.
On voit donc qu'il y aura souvent tout avantage à traiter du premier coup le Cas général des équations intégro-différentielles aux dérivées partielles.
L. POMEY, Équations intégro-différentielles, ICM 1928

(1) Vito VOLTERRA : Leçons sur les fonctions de lignes, 1913
(2) Vito VOLTERRA : Leçons sur les équations intégrales et les équations intégro-différentielles, 1913 

 

50,00 *
Référence: 066

rouge.jpg

Au cours de l'hiver 1928-1929, M. Émile Borel et la Direction du nouvel Institut Henri Poincaré me firent le grand honneur de me demander quelques conférences. Je choisis comme sujet la théorie mathématique des fluctuations biologiques. Le présent ouvrage a le titre même de ces conférences : Théorie mathématique de la lutte pour la Vie.
En effet le domaine d'application de ces recherches comprend tous les phénomènes de lutte entre les individus d'une collectivité, les gains des uns étant obtenus grâce aux pertes des autres, gains et pertes pouvant s"évaluer numériquement.
Cette étude repose sur celle des intégrales de certaines équations différentielles et intégro-différentielles, qu'il faut examiner très en détail soit d'une manière quantitative, soit, bien souvent, d'une manière seulement qualitative.
Je tiens ici à rendre hommage à la mémoire de Henri Poincaré et à son génie, en rappelant combien il a insisté dans certains de ses travaux classiques, sur le rôle que peut jouer dans la philosophie naturelle l'étude qualitative des intégrales des équations différentielles.
Vito VOLTERRA, Préface

35,00 *
Référence: 323

rouge.jpg

Les théories développées dans cet Ouvrage avaient déjà été abordées dans deux volumes précédemment parus de cette collection : mes Leçons sur les équations intégrales et les équations intégro-différentielles, et mes Leçons sur les fonctions de lignes.
C'est en effet, pour résoudre le premier problème qui se présente dans la théorie des équations intégrales linéaires que j'ai introduit l'opération de composition en formant les puissances entières de composition du noyau de l'équation intégrale et en démontrant que ces puissances sont des fonctions permutables entre elles ; le noyau résolvant apparaît alors comme une série de composition, c'est à dire une fonction de composition. Les trois concepts fondamentaux d'opération de composition, de permutabilité et de fonctions de composition, concepts qui seront étudiés dans ces Leçons, ont donc pour commune origine la méthode que j'ai donnée pour la résolution des équations intégrales.
Aussi, dès le second Chapitre du premier volume déjà cité, les deux premiers concepts apparaissent sous leur forme primitive limitée aux puissances entières du noyau ; dans le dernier Chapitre ils sont envisagés d'un point de vue plus général.
Dans le second volume, la théorie de la composition et des fonctions permutables est beaucoup plus développée, spécialement en vue des applications à la résolution d'équations intégrales et intégro-différentielles qui interviennent dans certaines théories de la Physique mathématique ; on y envisage d'autre part des classes plus étendues de fonctions de composition.
Mais l'opération de composition et la permutabilité n'apparaissent dans les deux volumes précédents que d'une manière indirecte et en fonction de leur utilité pour résoudre certains problèmes. En outre, quoiqu'on y emploie plusieurs fois des fonctions de composition on ne leur donne pas de dénomination spéciale, et l'on n'en expose pas une théorie générale.
Or, par divers travaux qui ont suivi la publication de ces Ouvrages, la théorie de la composition de première espèce s'est beaucoup développée. Il a donc paru utile de dégager cette théorie des recherches auxquelles elles avaient servi d'auxiliaire et d'en donner un exposé autonome, plus systématique et complet : c'est ainsi que fut conçu le plan de ces Leçons.
Vito VOLTERRA, Préface

42,00 *
Référence: 345

rouge.jpg

Les éléments des Mathématiques présentent deux divisions bien tranchées : d'une part, l'Arithmétique et l'Algèbre ; de l'autre, la Géométrie. Rien de plus différent, à leur début, que les considérations et les méthodes propres à ces deux parties d'une même science, et, bien qu'associées dans la Géométrie analytique, elles restent essentiellement distinctes si loin qu'on les poursuive, et paraissent se rapporter à des aptitudes et à des tendances intellectuelles spéciales. Ce double point de vue de l'Algèbre et de la Géométrie se retrouve dans le Calcul différentiel et le Calcul intégral ; on peut dire en effet de ces nouvelles branches de Mathématiques qu'elles sont comme une Algèbre plus vaste et plus féconde, appliquées à des questions de Géométrie inaccessibles au Calcul élémentaire, telles que la quadrature des courbes, la détermination des volumes limités par des surfaces quelconques, la rectification des courbes planes ou gauches, etc.
Cet aperçu ne justifie point au premier abord la dénomination , souvent employée, de Calcul infinitésimal, qui semble annoncer une étude et une science de l'infini, résultant d'un rôle plus étendu de cette notion que dans les éléments. En réalité, le rôle de l'infini, dans ces régions élevées des Mathématiques, est en entier résumé dans un petit nombre de propositions du caractère le plus simple, et telles qu'on pourrait les énoncer et les démontrer dès le commencement de la Géométrie. C'est l'application répétée de ces mêmes propositions qui constitue ce qu'on nomme la méthode infinitésimale, méthode qui sera bientôt exposée, et dont il sera donné dans ce Cours de nombreux exemples. Mais, dès à présent, nous devons dire qu'en se montrant de plus en plus féconde, la notion de l'infini reste toujours simplement la notion d'une grandeur supérieure à toute grandeur donnée, et que les conditions de son emploi restent toujours celles des éléments de la Géométrie. Autant que peut le donner un premier aperçu, l'objet de ces leçons est donc une continuation de l'Algèbre, en y joignant quelques principes très élémentaires sur l'infini, qui conduisent à résoudre par le calcul les questions de Géométrie dont il a été parlé précédemment. Avant d'entrer dans ces matières, il est donc naturel de jeter un coup d'œil sur l'Algèbre, afin de ne laisser aucune solution de continuité entre ce cours et l'enseignement qui l'a précédé.
Je rappellerai d'abord qu'on a commencé par étendre aux quantités littérales les opérations ordinaires de l'Arithmétique, addition, soustraction, multiplication et division. On traite ensuite de la résolution des équations et systèmes d'équations du premier degré, et l'on aborde enfin les équations de degré quelconque. Or, à propos de la division algébrique, apparaît déjà la considération toute spéciale des polynômes ordonnés par rapport aux puissances d'une variable, dont l'étude plus approfondie, constitue plus précisément ce qu'on nomme la théorie générale des équations. Les éléments d'Algèbre ont donc pour principal objet les propriétés des fonctions rationnelles et entières d'une variable, et ils conduisent ainsi à l'Analyse, c'est à dire à l'étude générale des fonctions. Ce qui concerne la résolution des équations du premier degré à plusieurs inconnues se rattache d'ailleurs au même point de vue, car alors on ne fait au fond qu'établir certaines propriétés d'un système de fonctions linéaires de plusieurs variables. Mais ici il importe de rendre parfaitement clair ce qu'on entend dire par étude générale des fonctions.
Il a été question tout à l'heure de polynômes ; or les éléments conduisent encore à d'autres expressions qu'on nomme transcendantes, par exemple l'exponentielle et le logarithme, et en second lieu le sinus, le cosinus, la tangente d'un arc. Les premières sont étudiées en Algèbre même, et les autres sont le sujet de la Trigonométrie, qui n'est visiblement qu'un chapitre spécial d'Algèbre, donnant, parmi bien d'autres conséquences, la résolution numérique des triangles. Maintenant on peut poser une question : N'existe-t-il de fonctions que celles dont nous venons de parler et leurs combinaisons ? Si la réponse était affirmative, l'Analyse laisserait apercevoir ses bornes, son champ serait fini et limité ; mais il est bien loin d'en être ainsi, le Calcul différentiel et le Calcul intégral étendent indéfiniment leur domaine en fournissant l'origine et posant la base de l'étude d'un nombre infini de fonctions nouvelles. Ainsi l'on comprend que Lagrange ait donné à l'un de ses Ouvrages, qui est précisément consacré à une exposition des principes du Calcul différentiel et du Calcul intégral, le titre de Leçons sur le Calcul des fonctions. En suivant la pensée de ce grand géomètre, nous allons présenter sur les fonctions connues par les éléments quelques considérations qui serviront d'introduction à ce Cours, et dont il sera souvent fait usage par la suite.
Charles HERMITE, Introduction

72,00 *
Référence: 349

A reparaître

rouge.jpg

Dans la théorie des fonctions de variables réelles, qui forme les onze premiers chapitres de ce livre, j'ai considéré plus particulièrement les fonctions qui sont en général continues ; ce sont celles que l'on rencontre le plus souvent dans les applications. Aussi ai-je donné la place principale à l'intégrale au sens de Riemann, et n'ai-je introduit l'intégrale de Stieltjes que dans les cas les plus simples. Mais j'ai exposé brièvement, à titre de complément, les premiers éléments de la théorie de Lebesgue : théorie de la mesure des ensembles linéaires et théorie des fonctions mesurables d'une variable (Chap. V). C'est également comme complément que je donne des indications sur les fractions continues arithmétiques (Chap. I, § III), la démonstration de la transcendance de e et de π (n° 50), une théorie indépendante des fonctions analytiques d'une variable réelle (Chap. VI, II), des considérations sur certaines intégrales curvilignes planes (n° 58) et sur les notions d'aire et de volume (n° 158).
J'ai insisté un peu plus qu'on ne le fait ordinairement sur les procédés de calcul numérique des intégrales définies ; la formule d'Euler et Mac-Laurin et la méthode de Gauss sont données en détail. La théorie de la série de Fourier, déjà connue en partie des étudiants de mathématiques générales, a été traitée par la méthode des moyennes arithmétiques ; elle est appliquée au problème des cordes vibrantes.
Dans la théorie des fonctions d'une variable complexe, j'ai fait jouer un rôle important à la représentation géométrique, c'est à dire à la représentation conforme. La transformation homographique est étudiée avec quelques détails et des indications sont données sur la géométrie de Poincaré, image de la géométrie de Lobatchewsky. J'ai apporté quelques compléments aux questions habituellement traitées dans les cours de calcul différentiel et intégral : théorème d'Hadamard sur la partie réelle (n° 184), théorème de Laguerre sur les polynômes à zéros réels (n° 193), théorème de Poincaré et Volterra sur le prolongement analytique (n° 201), formules de Jensen, Poisson et Nevanlinna (n°s 207-208), théorème d'Hadamard sur la décomposition en facteurs des fonctions entières d'ordre fini (n° 210).
D'autre part, j'ai amorcé l'étude de quelques théories dont l'exposition, grâce aux efforts de nombreux mathématiciens contemporains, se présente désormais sous une forme simple et n'exigeant pas de longs développements. Je donne au Chapitre XV la démonstration du théorème sur la représentation conforme des aires simplement connexes à partir de théorèmes sur les suites de fonctions holomorphes ; j'en déduis les propositions les plus simples sur la représentation conforme d'un demi-plan sur un polygone ou sur un triangle circulaire (théorèmes de Schwarz), puis à l'aide de la fonction modulaire elliptique des théorèmes de Picard, Landau, Schottky, Julia. Dans la théorie des fonctions elliptiques (Chap. XVI), les fonctions de Jacobi sont introduites à la suite de l'étude des fonctions qui restent invariantes par la multiplication de la variable par un facteur fixe. Dans le dernier chapitre, je donne d'abord les théorèmes de Borel et de Mittag-Leffler sur le prolongement analytique, comme applications des propriétés de la fonction eulérienne gamma et de théorèmes de Lindelöf et Phragmén ; puis, après avoir étudié les fonctions introduites par Riemann dans la théorie analytique des nombres, je termine ce premier volume par la démonstration, d'après Hadamard et Landau, de la formule donnant l'expression asymptotique du nième nombre premier.
Georges VALIRON, Préface

*


 

61 - 70 sur 70 résultats