Référence: 036
La description physique a conduit à découvrir un lien remarquable entre l'information et l'entropie. Cette similitude a été signalée il y a longtemps par L. Szilard dans une publication déjà ancienne, datant de 1929 ; il s'y révèle comme un précurseur de la théorie actuelle. Dans ce travail, Szilard fait figure de pionnier dans cette contrée inconnue que nous avons explorée dans toutes les directions. Il étudie le problème du démon de Maxwell, problème qui est une des questions importantes étudiées dans cet ouvrage. La relation entre l'information et l'entropie a été redécouverte par C. Shannon dans l'étude d'une grande variété de problèmes et nous consacrons plusieurs chapitres à cette question. Nous montrons que l'information doit être considérée comme un terme négatif figurant dans l'entropie d'un système ; en bref, l'information est de la néguentropie. L'entropie d'un système physique est souvent considérée comme une mesure de l'incertitude où l'on se trouve sur la structure de ce dernier. Nous pouvons parvenir à ce résultat par deus chemins peu différents. |
38,00 €
*
|
|
Référence: 082
Ce livre a un caractère introductif ; on ne suppose donc au lecteur aucune connaissance préalable du Calcul des Probabilités. Il est cependant nécessaire qu'il possède des connaissances dans d'autres branches de la mathématique. Il lui faut non seulement bien connaître les éléments du calcul différentiel et intégral, mais encore être familiarisé avec la théorie des fonctions réelles et des fonctions complexes. De plus une certaine maturité mathématique est souhaitable, ainsi qu'un souci de rigueur dans les démonstrations. Ce livre s'adresse donc à des débutants exigeants. |
48,00 €
*
|
|
-5%