Imprimer

PRIX NOBEL

PRIX NOBEL




Niels BOHR
(1885-1962)
Physique 1922
[ pour le mérite de ses études sur la structure des atomes et le rayonnement qui en émane. ]

- La théorie atomique et la description des phénomènes, 1932
Reprint, 1993, 13,5 x 21,5, 126 p., broché
ISBN 978-2-87647-153-5


Max BORN
(1882-1970)
Physique 1954

[ pour ses travaux fondamentaux en mécanique quantique et spécialement pour son interprétation statistique de la fonction ondulatoire. ]

- La théorie de la relativité d'Einstein et ses bases physiques, 1923
Reprint, 2003, 17 x 24, 362 p., broché
ISBN 978-2-87647-230-3

Louis de BROGLIE
(1892-1987)
Physique 1929

[ pour sa découverte de la nature ondulatoire des électrons. ]

- Éléments de théorie des quanta et de mécanique ondulatoire, 1953
Reprint, 2005, 17 x 24, 320 p., broché
ISBN 978-2-87647-229-7

- Ondes et mouvements, 1926
Reprint, 1988, 16 x 24, 142 p., broché
ISBN 978-2-87647-041-

Paul A. M. DIRAC
(1902-1984)
Physique 1933

[ pour la découverte de formes nouvelles et productives de la théorie atomique. ]

- Les principes de la mécanique quantique, 1931
Reprint, 2007, 17 x 24, 330 p., broché
ISBN 978-2-87647-071-2

Albert EINSTEIN (1879-1955)
Physique 1921

[ pour ses mérites en physique mathématique, spécialement pour sa découverte de la loi de l'effet photoélectrique. ]

- La théorie de la relativité restreinte et généralisée, 1921
Reprint, 2005, 13,5 x 21,5, 150 p., broché
ISBN 978-2-87647-249-5

- Les fondements de la théorie de la relativité générale + Théorie unitaire de la gravitation et de l'électricité + Sur la structure cosmologique de l'espace, 1933
Reprint, 2009, 16 x 24, 120 p., broché
ISBN 978-2-87647-342-3

- Lettres à Maurice Solovine, 1956
Reprint, 2005, 21,5 x 28, 166 p., broché
ISBN 978-2-87647-275-4

- Quatre conférences sur la théorie de la relativité, faites à l'Université de Princeton, 1925
Reprint, 2005, 16 x 24, 112 p., broché
ISBN 978-2-87647-277-8

- Sur l'électrodynamique des corps en mouvement, 1925
Reprint, 2005, 13,5 x 21,5, 70 p., broché
ISBN 978-2-87647-276-1

- Sur l'électrodynamique des corps en mouvement + 6 autres textes fondamentaux sur la théorie de la relativité restreinte et générale, 1925
Reprint, 1994, 24,5 x 18, oblong, 160 p., broché, 7 titres en 1 volume
ISBN 978-2-87647-155-9


Charles Édouard GUILLAUME (1861-1938)
Physique 1920
[ en reconnaissance du service qu'il a rendu en métrologie en découvrant des anomalies dans les aciers de nickel ]

- MOLK : ENCYCLOPÉDIE DES SCIENCES MATHÉMATIQUES PURES ET APPLIQUÉES, V-1, V-2, V-3 et V-4, Physique, 1915-1916
Reprint, 1991, 24,5 x18, oblong, 190 p., broché
ISBN 978-2-87647-118-4
Article V 1 - Carl RUNGE et Charles Édouard GUILLAUME : La Mesure

- Henri POINCARÉ : La Mécanique nouvelle (Théorie de la Relativité), 1924
Reprint, 2007, 17 x 24, 108 p., broché
ISBN 978-2-87647-023-1
Charles Édouard GUILLAUME : Introduction

Werner HEISENBERG
(1901-1976)
Physique 1932
[ pour l'établissement de la mécanique quantique dont l'application a conduit entre autres à la découverte des formes allotropes de l'hydrogène. ]

- Les principes physiques de la théorie des quanta, 1932
Reprint, 1990, 16 x 24, 140 p., broché
ISBN 978-2-87647-080-4

Max von LAUE (1879-1963)
Physique 1914

[ pour sa découverte de la diffraction des rayons Röntgen dans les cristaux. ]

- La Théorie de la Relativité , t. I, 1924 et t. II, 1926
Reprint, 2003, 17 x 24, 358 p. et 344 p., broché, 2 volumes
ISBN 978-2-87647-226-6                                                     

Hendrik-Antoon LORENTZ (1853-1928)
Physique 1902
[ pour ses recherches sur l'influence du magnétisme sur les phénomènes de rayonnement. ]

- The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat, 2nd ed., 1916 (en anglais)
Reprint, 1992, 24,5 x 18, oblong, 176 p., broché
ISBN 978-2-87647-130-6                                                                                                           

Max PLANCK (1858-1947)
Physique 1918
[ en reconnaissance des services qu'il a rendus pour le développement de la physique par la découverte de l'élément (quantum) d'action. ]

- Leçons de thermodynamique, 1913
Reprint, 2008, 17 x 24, 324 p., broché
ISBN 978-2-87647-303-4                                                                                                                     

- Électromagnétisme,1939
Reprint, 2005, 17 x 24, 472 p., broché
ISBN 2-87647-278-5

Ilya PRIGOGINE (1917-2003)
Chimie 1977
[ for his contributions to non-equilibrium thermodynamics, particularly the theory of dissipative structures. ]

- Introduction à la thermodynamique des processus irréversibles, 1968
Reprint, 1996, 22,5 x 18, oblong, 96 p., broché
ISBN 978-2-87647-169-6                                          

Erwin SCHRÖDINGER
(1887-1961)
Physique 1933
[ pour la découverte de formes nouvelles et productives de la théorie atomique. ]

- Mémoires sur la mécanique ondulatoire, 1933
Reprint, 1988, 16 x 24, 266 p., broché
ISBN 978-2-87647-048-4                                                                                                     

Johannes Diderik Van der WAALS (1837-1923)
Physique 1910
[ pour ses travaux concernant l'équation de l'état d'agrégation des gaz et des liquides. ]

- La continuité des états gazeux et liquide, 1894
Reprint, 2008, 16 x 24, 304 p., broché
ISBN 978-2-87647-325-6


Affichage par page
Trier par
Référence: 153

bleu.jpg

En 1913 un physicien danois, Niels Bohr, étendit la notion de quantification de l'énergie radiante, due à Planck, à l'énergie mécanique des électrons à l'intérieur des atomes. Introduisant des « règles de quantification » spécifiques pour les systèmes mécaniques de dimensions atomiques, il aboutit à une interprétation logique du modèle planétaire de l'atome qui, établi par Ernest Rutherford sur une base expérimentale solide, se trouvait pourtant en nette contradiction avec tous les concepts fondamentaux de la physique classique. Ayant calculé les énergies des divers états quantiques discrets de certains électrons atomiques, Bohr interpréta l'émission lumineuse comme l'éjection de quanta de lumière, chaque quantum de lumière étant éjecté avec une énergie égale à la différence entre celle de l'état quantique initial et de l'état quantique final d'un électron atomique. Ses calculs lui permirent d'expliquer en détail les raies spectrales de l'hydrogène et de certains éléments plus lourds, problème qui avait intrigué les spectroscopistes pendant des dizaines d'années. La première publication de Bohr relative à la théorie quantique de l'atome fut à l'origine de développements foudroyants. Au cours d'une seule décennie, grâce aux efforts conjugués de théoriciens et d'expérimentateurs appartenant à de nombreux pays, les propriétés optiques, magnétiques et chimiques de divers atomes furent comprises en détail.
George GAMOW, Trente années qui ébranlèrent la physique, 1968

21,00 *
Référence: 230

A reparaître

bleu.jpg

Les difficultés apparentes de la Théorie de la Relativité sont pour la plupart du temps dues au fait que les auteurs qui en parlent ne mettent pas assez en évidence la base expérimentale sur laquelle elle repose. Et c'est ainsi que l'opinion erronée a pu se répandre, même parmi les esprits très cultivés, que la nouvelle Théorie est plutôt une spéculation mathématique qu'une théorie physique à proprement parler.
La lecture du Livre pénétrant et clair de Max Born rendra désormais impossible cette fausse interprétation. De l'étude magistrale, surtout des phénomènes optiques et électrodynamiques, faite dans les Chapitres IV et V, il ressort avec pleine évidence non seulement que le principe de relativité a une origine exclusivement expérimentale, mais qu'il a de plus exercé une influence des plus fécondes sur les recherches de laboratoire.
Émanant de toutes les branches de la Physique, la Théorie de la Relativité les fait apparaître sous un aspect nouveau, y introduisant une harmonie d'une singulière beauté. Elle projette finalement une vive lumière sur les problèmes cosmologiques.
Max Born s'est, en outre, donné comme tâche de démontrer que l'évolution des théories physiques et la critique épistémologique des notions fondamentales devaient fatalement conduire à la conception nouvelle qui marque une étape décisive dans l'histoire de la Science.
Adolphe BUHL, L'Enseignement Mathématique, Vol. 22 (1921-1922)

Référence: 229

A reparaître

bleu.jpg

Sommaire
- Résumé de la théorie de Maxwell et de la théorie des électrons.
- Le principe de Relativité.
- Compléments sur la théorie de la Relativité restreinte.
- La Mécanique statistique classique.
- La théorie du Rayonnement noir.
- La structure corpusculaire de la Lumière. Les Photons.
- La théorie quantique de l'atome de Bohr-Sommerfeld.
- Le principe de correspondance.
- Idées de base et équations fondamentales de la Mécanique ondulatoire.
- La signification physique de la Mécanique ondulatoire.
- Applications de la Mécanique ondulatoire à la quantification.
- Mécanique quantique d'Heisenberg et principe de correspondance.
- L'interprétation probabiliste de la Mécanique ondulatoire.
- Le spin de l'électron. La théorie de Dirac.
- Le principe de Pauli et la Mécanique ondulatoire des systèmes de corpuscules.
- Les statistiques quantiques.

Référence: 041

A reparaître

bleu.jpg

Dans ce petit volume, je présente au public scientifique le résumé dans leur état actuel des conceptions nouvelles sur les rapports de la Mécanique et de l'Optique que j'ai antérieurement développée dans divers mémoires et articles, et dont ma thèse de doctorat donnait un premier exposé d'ensemble.
[...]
En premier lieu, j'admets et je suppose connue toute la théorie de la Relativité tant sous sa forme primitive dite aujourd'hui « spéciale» que sous la forme généralisée. J'ai fait en particulier un usage constant de la Dynamique relativiste, et je suppose ses formules fondamentales bien présentes à l'esprit du lecteur. J'ai employé souvent le calcul tensoriel et la convention de sommation des indices ; toutefois le calcul tensoriel ne tient pas ici une très grande place et j'ai évité à dessein les formules compliquées, notamment dans le chapitre sur les champs gravifiques.
Je dois signaler la manière assez particulière dont j'ai introduit dans le cours de l'exposé la fameuse « équation des ondes ». Jadis, cette équation fut déduite des propriétés des milieux élastiques, étendues à cet hypothétique éther qu'on chargeait de transmettre les vibrations lumineuses et dont les singulières propriétés n'étaient pas à tout prendre beaucoup plus étranges que celles de nos modernes atomes. Plus tard, Maxwell parut et l'équation des ondes devint une conséquence des propriétés de l'électricité condensées sous la forme compacte à laquelle est attachée le nom du grand savant anglais. De nos jours, depuis que les théoriciens ont reconnu l'importance fondamentale du « groupe de Lorentz »,une certaine tendance s'est manifestée à considérer l'équation des ondes comme une sorte de postulat plus général que les formules de l'électromagnétisme. Ce point de vue se manifeste en particulier dans la façon dont Max von Laue introduit le groupe de Lorentz, au début de son traité de Relativité. C'est à cette tendance nouvelle que j'ai sacrifié, en introduisant d'emblée dans mon premier chapitre, l'équation de propagation.
Dans le deuxième partie du livre, j'ai admis l'existence des quanta de lumière et j'ai cherché à montrer que cette idée n'était point aussi incompatible qu'on le croyait avec les conceptions anciennes. J'ai aujourd'hui, je l'avoue, une tendance à considérer, comme le font beaucoup d'expérimentateurs, que les quanta de lumière constituent une réalité expérimentale.
Enfin, dans la troisième partie, j'ai repris rapidement toute la thermodynamique statistique en admettant comme une définition, suivant le procédé d'Einstein et de Planck, la proportionnalité de l'entropie d'un état au logarithme du nombre de manières différentes dont cet état peut être réalisé.
Louis de BROGLIE, Préface

Référence: 071

A reparaître

bleu.jpg

Dirac était un contemporain de Heisenberg, de Pauli et de Fermi. Il avait commencé des études d'ingénieur électricien à Bristol, mais il changea pour les mathématiques pures qu'il aborda à Bristol et poursuivit ensuite au St John's College de Cambridge ; il y devint étudiant de recherche au titre de la Bourse de 1851. A Cambridge, il avait pris connaissance de la théorie atomique de Bohr et avait écrit quelques articles sur ce sujet. En 1925, après une visite de Heisenberg à Cambridge, il reçut les épreuves du premier article de celui-ci sur la Matrizenmechanik, qui constituait le premier contact de Dirac avec la mécanique quantique. Ayant étudié ces épreuves pendant environ dix jours, il aboutit à la conclusion que la nouvelle clé était la non-commutativité.
[...]
Pour la formulation de la mécanique quantique selon Dirac, il est nécessaire de se servir de certaines expressions mathématiques appelées q-nombres pour les distinguer des nombres ordinaires ou c-nombres. Les q-nombres ne sont pas des nombres au sens ordinaire du mot, mais de nouveaux objets mathématiques obéissant à une algèbre non-commutative, et qui sont directement liés aux matrices de Heisenberg et aux opérateurs de Schrödinger. La lettre q signifie quantique, alors que c signifie classique.
Ainsi dès 1925, Dirac réussit à donner une formulation complète de la mécanique quantique qui, à bien des égards, était plus générale que celle de ses contemporains. Elle est remarquable par sa formulation axiomatique et par les généralisations qu'elle permet.
Emilio SEGRÉ, Les physiciens modernes et leurs découvertes, Fayard, 1984

Référence: 080

A reparaître

bleu.jpg

L'originalité du livre de M. Heisenberg tient surtout à ce qu'il a voulu insister tout particulièrement sur la signification de la Mécanique nouvelle en se tenant aussi près que possible de l'expérience. Sa préoccupation essentielle, après nous avoir rappelé pourquoi les résultats expérimentaux ne peuvent être interprétés qu'en faisant appel d'une façon simultanée et en quelque sorte complémentaire aux notions d'onde et de corpuscule, est de nous montrer comment ces conceptions presque contradictoires ne peuvent être employées en même temps que si l'on diminue leur précision primitive en les limitant pour ainsi dire l'une par l'autre. Comment la considération des ondes oblige à abandonner la précision complète dans la définition du corpuscule, c'est ce que l'auteur résumant ses célèbres travaux nous montre dans le deuxième chapitre de son livre où les relations d'incertitude sont déduites et examinées en détail. Plus curieuses encore peut-être parce que moins connues sont les considérations du troisième chapitre où nous apprenons comment la notion de corpuscule réagit à son tour sur la notion d'onde en nous amenant à imaginer une quantification du champ électromagnétique. Puis après cette critique pénétrante l'auteur nous montre au quatrième chapitre que la seule façon de concilier les ondes et les corpuscules est en somme d'ordre statistique. Enfin un dernier chapitre d'un très grand intérêt contient l'examen détaillé au point de vue de la nouvelle théorie des expériences fondamentales énumérées et décrites au chapitre premier. Ainsi, parti de l'expérience, M. Heisenberg a voulu terminer par elle, précisant bien ainsi l'orientation de son œuvre.
Louis de BROGLIE, Préface

Référence: 276

A reparaître

bleu.jpg

Ce mémoire où Einstein a exposé pour la première fois sa théorie de la relativité restreinte, fut publié dans les Annalen der Physik, t. XVII, 1905.

Référence: 249

bleu.jpg

J'espère que ce Livre contribuera à accroître encore l'intérêt que les jeunes mathématiciens et physiciens portent aux théories physiques nouvelles.
Il y a encore beaucoup à faire, tant du côté expérimental que du côté théorique. Pour rester dans le domaine de la physique mathématique, il ne me paraît pas douteux que, si les méthodes admirables de calcul différentiel absolu de Ricci et Levi-Civita ont fourni immédiatement l'instrument le mieux approprié à l'exposition d'ensemble de la théorie, les méthodes plus particulières mais plus souples dont Darboux a donné de si beaux exemples dans sa Théorie des surfaces seront indispensables pour mener à bout les applications.
Pour traiter des questions pratiques de mécanique, il n'est pas toujours indiqué de partir des équations canoniques et, en électrotechnique, on ne se sert guère des équations de Maxwell ; ces constations ne diminuent en rien la valeur générale des équations canoniques ni des équations de Maxwell.
De même, on ne diminue pas la valeur de la théorie de la relativité générale en souhaitant que des cas particuliers soient étudiés par des méthodes parfois plus simples et mieux appropriées que les méthodes les plus générales ; ce n'est point ici le lieu de résumer ce qui a déjà été fait dans ce sens ; je me contenterai d'émettre le vœu que nos jeunes chercheurs apportent leur contribution à l'édifice magnifique dont Poincaré et Lorentz avaient entrevu d'importants fragments, mais dont Einstein aura la gloire d'avoir été le premier à concevoir clairement le plan.
Émile BOREL, Préface

33,00 *
Référence: 342

bleu.jpg

L'ouvrage contient la traduction française des 3 textes suivants :

Albert EINSTEIN : Die Grundlage der allgemeinen Relativitätstheorie
(Annalen der Physik, vol. XLIX, 1916, p. 769-882)

Albert EINSTEIN et Walter MAYER : Einheitliche Theorie von Gravitation und Electrizität
(Preussische Akademie der Wissenschaften, Sitzungsberichte
, 1931, p. 541-557)

Albert EINSTEIN : Sur la structure cosmologique de l'espace
(titre français du manuscrit rédigé au mois de septembre 1932)

21,00 *
Référence: 277

bleu.jpg

En rédigeant ces quatre conférences, que j'ai faites à l'Université de Princeton, en mai 1921, mon but était de résumer les idées principales et les méthodes mathématiques de la Théorie de la relativité. J'ai laissé de côté les parties moins essentielles et me suis appliqué à traiter les questions fondamentales d'une façon telle que l'ensemble puisse servir d'introduction à tous ceux qui connaissent les éléments des mathématiques supérieures, mais qui ne peuvent consacrer trop de temps et d'effort à cette matière.
Dans ce court exposé, le sujet ne pouvait pas, bien entendu, être traité dans tous ses détails. J'ai, par exemple, négligé les développements plus subtils et, au point de vue mathématique, plus intéressants, qui sont basés sur le calcul des variations. J'ai visé tout particulièrement à mettre en pleine lumière les principes qui servent de support aux raisonnements de la théorie.
Albert EINSTEIN, Préface

21,00 *
Référence: 275

A reparaître

violet.jpg  bleu.jpg

Maurice Solovine, venant de Roumanie, arriva à Berne en 1900 et y rencontra Einstein pour la première fois.
C'est là que commencèrent une amitié et un échange de correspondance qui dura jusqu'à la mort.

 

Référence: 155

A reparaître

bleu.jpg

Contenu :

- Sur l'Électrodynamique des corps en mouvement, 1925
- L'Éther et la Théorie de la Relativité, 3e éd., 1953
- La Géométrie et l'Expérience, 3e éd., 1953
- Quatre conférences sur la Théorie de la Relativité, 1925
- Sur le Problème cosmologique, 2e éd., 1960
- Théorie relativiste du champ non symétrique, 1960
- Théorie de la Gravitation généralisée, 1951

 

 

Référence: 226

bleu.jpg

Rien d'essentiel de ce qui est contenu dans les travaux fondamentaux d'Einstein, de Planck, de Minkowski n'a été négligé ; on le retrouvera sous une forme ou sous une autre dans le présent exposé. La forme mathématique donnée récemment à la théorie par Sommerfeld fait l'objet d'un examen détaillé. On peut considérer comme nouveau l'exposé de la Dynamique (Chap. VII) étudiant d'une façon tout à fait générale l'influence des tensions élastiques sur l'impulsion et sur l'énergie, ainsi que la transformation des tensions quand on passe d'un système de référence à un autre.
Le présent exposé ne suppose chez le lecteur, en dehors du bagage ordinaire du théoricien de la Physique, du Calcul infinitésimal et de l'Analyse vectorielle, qu'une certaine connaissance de la théorie de Maxwell dont les lois les plus importantes sont, du reste, brièvement déduites au paragraphe 4. Les méthodes particulières, créées par Minkowski pour la théorie de la relativité, sont développées dans les paragraphes 9 à 13.
Max von LAUE, Tome I, Préface de la première édition

113,00 *
Référence: 130

bleu.jpg

The publication of these lectures, which I delivered in Columbia University in the spring of 1906, has been unduly delayed, chiefly on account of my wish to give some further development to the subject so as to present it in a connected and fairly complete form; for this reason I have not refrained from making numerous additions. Nevertheless there are several highly interesting questions, more or less belonging to the theory of electrons, which I could but slightly touch upon. I could no more than allude in a note to Voigt's Treatise on magneto-optical phenomena, and neither Planck's views on radiation, nor Einstein's principle of relativity have received an adequate treatment.
In one other respect this book will, I fear, be found very deficient. No space could be spared for a discussion of the different ways in which the fundamental principles may be established, so that, for instance, there was no opportunity to mention the important share that has been taken in the development of the theory by Larmor and Wiechert.
Hendrik-Antoon LORENTZ, Preface

31,00 *
Référence: 169

A reparaître

bleu.jpg

Au cours des vingt dernières années, la thermodynamique a cessé de se consacrer aux seules situations d'équilibre des systèmes et à leurs transformations réversibles pour aborder l'étude quantitative des processus qui dissipent irréversiblement l'énergie.
L'importance d'une telle évolution ne saurait être sous-estimée, étant donnée la place qui revient de fait à la thermodynamique dans le concert des autres disciplines orientées vers l'étude de la matière.
Or, malgré l'intérêt croissant soulevé par la nouvelle thermodynamique, on ne trouve que très peu d'exposés synthétiques récents en langue française. Aussi, nous a-t-il paru opportun de présenter au lecteur français et en particulier à l'étudiant un ouvrage à la fois concis et panoramique qui offre une large ouverture sur les divers aspects de cette discipline aussi bien dans le domaine du linéaire (proche de l'équilibre) que dans celui des transformations éloignées des états d'équilibre.
Dans ce but, il nous a semblé que nous ne pouvions mieux choisir que de traduire l'Introduction to Thermodynamics of Irreversible Processes d'Ilya Prigogine à qui cette discipline doit tant depuis son origine. A l'occasion de cette traduction, l'auteur a bien voulu remanier et compléter la précédente édition en consacrant les deux derniers chapitres à l'étude des systèmes évoluant loin de l'équilibre.
En souhaitant avoir été l'interprète fidèle de sa pensée, nous tenons à lui exprimer notre gratitude pour la confiance qu'il nous a marquée.
J. CHANU, Avant-Propos

Référence: 048

bleu.jpg

Malgré les énormes succès pratiques, remportés ces dernières années par la mécanique nouvelle, ou peut-être à cause même de cela, les difficultés internes de la nouvelle théorie nous apparaissent aujourd'hui beaucoup plus clairement qu'au début. Elles s'amoncellent devant nos yeux et culminent dans l'antinomie irréductible ondes-particules (images que nous sommes obligés de garder toutes les deux parce que nous ne savons pas encore comment nous en débarrasser), – ainsi que dans le contraste entre l'évolution du phénomène ondulatoire qui s'effectue d'une manière parfaitement définie, et le comportement observable des particules, qui selon toutes les apparences, n'est déterminé que statistiquement.
A cela il faut encore ajouter que jusqu'à présent nous avons à peine réussi à trouver l'équivalent quantique de la mécanique de Newton, c'est à dire l'approximation qui correspond à c = ∞. Jusqu'à l'heure actuelle le succès n'a couronné aucune des tentatives d'incorporer à la nouvelle théorie les ondes électromagnétiques (les photons), ou de tenir compte de la vitesse finie avec laquelle se propage l'interaction d'atome à atome, ou à l'intérieur d'un même atome. A mon avis, la raison de cet état de choses doit être cherchée dans l'extraordinaire difficulté qu'on rencontre lorsqu'on veut concilier l'ensemble des conceptions de la mécanique nouvelle d'une part, avec celles de la théorie de la relativité restreinte de l'autre.
Nous avons donc peut-être raison de vouloir toujours retourner à l'origine première de nos conceptions fondamentales ; car, qui sait, en effet, si pour obtenir le résultat tant désiré il ne faudra pas transformer radicalement l'édifice que nous avons construit jusqu'à présent, pour l'asseoir sur des bases entièrement nouvelles ?
Erwin SCHRÖDINGER, Avant-Propos, septembre 1932

42,00 *
Référence: 325

bleu.jpg  vert.jpg

En résumé, la théorie inaugurée par M. Van der Waals conduit à considérer les deux états, liquide et gazeux, comme se confondant, sans discontinuité essentielle, en un seul état, l'état fluide, dont toutes les propriétés découlent d'une équation caractéristique unique.
En principe, cette équation permet de représenter théoriquement les lois de la compressibilité à l'état liquide et à l'état gazeux, les éléments du point critique, les tensions de la vapeur saturée et du liquide à l'état de saturation. On peut en conclure, par la formule de Clapeyron, la chaleur latente de vaporisation ; les formules générales de la thermodynamique permettent, enfin, d'ajouter à ces conséquences, déjà si nombreuses, le calcul théorique de la différence des chaleurs spécifiques sous pression constante et à volume constant, ainsi que l'expression, à une fonction de la température près, de la chaleur spécifique à volume constant.
En fait, cette équation n'est qu'une première approximation ; les vérifications expérimentales démontrent bien son exactitude générale, mais il est indispensable de lui faire subir certaines modifications pour obtenir avec rigueur la représentation numérique des phénomènes. Un essai, dans cette voie, a déjà été fait par Clausius et de nouveaux efforts seront encore nécessaires ; mais dans son état actuel, la théorie de M. Van der Waals peut être considérée comme représentant dans leur allure générale, une classe fort étendue de phénomènes naturels. C'est par de telles synthèses que s'édifient les théories physiques.
Émile SARRAU, Préface

54,00 *
Référence: 278

A reparaître

bleu.jpg

Comme, de toutes les lois de la physique, aucune n'est aussi universelle et en même temps aussi claire que le principe de l'énergie, j'ai une fois de plus placé ce principe au premier plan. Cela a entraîné l'avantage supplémentaire que l'introduction des divers systèmes d'unités électriques et magnétiques, qui se basent tous sur le principe de l'énergie, est venue d'elle-même. C'est aussi dans l'intérêt de l'intuitivité qu'on a insisté sur les analogies formelles des vecteurs électrique et magnétique, malgré que celles-ci soient d'une nature plutôt artificielle et ne correspondent au fond, tout comme les analogies entre la translation et la rotation, qu'à cette circonstance en quelque sorte accidentelle que notre espace possède justement trois dimensions. Mais de même qu'il est certain que ces analogies ont joué, dans le développement historique de la théorie de Maxwell, un rôle de premier plan, de même on ne peut pas méconnaître qu'elle ne soit, aujourd'hui encore, très commode pour l'introduction dans la théorie et qu'elle fournit dans chaque cas d'utiles règles mnémotechniques. A cela est lié le fait que j'ai utilisé partout le système d'unités dit de Gauss, qui se distingue, parmi les systèmes rationnels ordinairement utilisés dans la littérature théorique, par une parenté plus grande avec les systèmes pratiques. On trouvera à la fin de l'ouvrage un tableau synoptique des divers systèmes et des relations entre les valeurs numériques de certaines grandeurs mesurées dans ces systèmes.
Max PLANCK, Préface à la première édition, 1922

 

Référence: 303

A reparaître

bleu.jpg

L'hypothèse des quanta exige seulement que dans les lois élémentaires régissant les forces atomiques, il existe implicitement certaines discontinuités qui auront ensuite pour conséquence les régions discontinues de probabilité. Quant à la nature de ces discontinuités, il n'est pas présentement possible d'en rien dire : il faut remarquer spécialement que la structure en quanta ne se rapporte pas immédiatement à l'énergie, mais à la probabilité. On ne peut, d'une façon absolue, parler de quanta d'énergie que dans les phénomènes périodiques. Selon moi, on tiendra complètement compte de l'hypothèse des quanta si dans un oscillateur moléculaire à vibration périodique on regarde seulement l'émission de l'énergie comme gouvernée par les quanta, et au contraire l'absorption, tout au moins pour la chaleur rayonnante, comme parfaitement continue dans son allure. Pour les phénomènes non périodiques, A. Sommerfeld a récemment tracé les lignes fondamentales d'une théorie des quanta, très hardie et fort intéressante, et dans laquelle ne jouent naturellement un rôle que des quanta d'action sans quanta d'énergie.
Il ne faut pas reprocher à l'hypothèse même des quanta cette chatoyante variété d'opinions. Au contraire: c'est justement quand on examine dans toutes les directions possibles, c'est quand chacun des chercheurs, sans se troubler d'objections qu'il estime sans valeur, poursuit sa propre voie sur des terrains où lui-même se sent le plus assuré, que nous pouvons légitimement espérer voir,se manifester le véritable caractère de l'hypothèse. Ainsi, en effet, en dehors du rayonnement calorifique et de la chaleur spécifique, un grand nombre d'autres phénomènes physiques ont été peu à peu rapprochés de l'hypothèse des quanta: l'effet de Doppler dans les rayons-canaux, l'effet lumineux-électrique, la tension d'ionisation, la production des rayons Rœntgen et des rayons γ avec leur inversion : la mise en liberté de rayons cathodiques secondaires par des rayons Rœntgen, la résistance de conduction électrique, les forces thermo-électriques, la loi de formation des lignes spectrales en série, l'émission des électrons dans les réactions chimiques, – partout, au moins avec quelque bonne volonté, on peut retrouver la trace de la domination encore bien mystérieuse du quantum universel d'action. Et bien plus, le fait remarquable établi par O. Hahn, et ses collaborateurs, qu'une substance radioactive, pourvu qu'elle soit de nature chimique unique, émet des rayons β de vitesses parfaitement déterminées, semble démontrer pour ainsi dire de visu l'émission des quanta.
Le plus gros reste encore à faire, et maint résultat qui semble plein de promesse, tombera encore comme une fleur flétrie de l'arbre de la connaissance: mais l'élan est donné. L'hypothèse des quanta ne disparaîtra plus du monde, car les lois du rayonnement calorifique y veillent déjà. Et je ne crois pas trop m'avancer en exprimant l'opinion, qu'avec cette hypothèse les fondations sont établies pour l'édification d'une théorie destinée à pénétrer un jour les particularités des actions rapides et subtiles du monde moléculaire.
Max PLANCK, Conférence prononcée le 16 décembre 1911 à la Société chimique allemande de Berlin

*