Imprimer

LUSIN, Nicolas

LUSIN, Nicolas


Né le 9 décembre 1883 à Irkoutsk, Russie
Décédé le 25 février 1950 à Moscou, Russie

Mathématicien russe




 

Études à l'Université de Moscou où il rencontre Egorov.
En 1910 il est à Göttingen où il fréquente Edmund Landau.
Ses travaux se rapportent à la théorie de la mesure, à la théorie des ensembles, aux fonctions analytiques et aux équations différentielles.
Lusin a également publié des article d'histoire des mathématiques.







Affichage par page
Trier par
Référence: 125

rouge.jpg

Les questions traitées dans cet Ouvrage appartiennent à la théorie descriptive des fonctions dont MM. Borel, Baire et Lebesgue sont les fondateurs. Je me suis proposé, d'une part, de continuer et d'étendre les recherches de M. R. Baire arrêtées à l'étude des fonctions de classe 3. J'ai, d'autre part, cherché à étudier des familles d'ensembles de points qui sont au delà de la classification de Baire. Cette étude s'est heurtée à des difficultés qui débordent la technique ordinaire de la théorie des ensembles, et qui sont visiblement liées aux controverses sur le continu considéré du point de vue arithmétique. C'est ici que nous pénétrons pratiquement dans le domaine des idées de M. É. Borel.
Ainsi, pendant mes recherches, je me suis placé sur le terrain des idées de M. É. Borel, idées qui m'ont aidé à m'orienter dans mes travaux et ont toujours guidé mon choix sur leur direction. Et en même temps ce sont les travaux de M. H. Lebesgue qui m'ont fourni la matière même de mes recherches. Son célèbre Mémoire Sur les fonctions représentables analytiquement est non seulement le point de départ de mon travail ; mais il est si étroitement lié à cet Ouvrage que ce dernier peut être considéré simplement comme un développement sur quelques points de ce Mémoire. Un autre point du Mémoire de M. H. Lebesgue, bien plus difficile que ceux traités ici et cependant encore plus important, est signalé à la fin de ce Livre.
Enfin, il ne m'est pas possible de passer sous silence les travaux synthétiques fondamentaux de M. Ch. de La Vallée Poussin et les recherches si importantes de M. A. Denjoy sur les ensembles clairsemés. Ces dernières recherches ont servi de base à mes études sur les classes supérieures de la classification de Baire.
Nicolas LUSIN, Avertissement

60,00 *
*

-5%