Le cercle dans lequel paraissait renfermées les études mathématiques au commencement du XIXe siècle a été brisé de tous côtés. Les problèmes anciens se présentent à nous sous une forme renouvelée, des problèmes nouveaux se posent, dont l'étude occupe des légions de travailleurs. Le nombre de ceux qui cultivent la Géométrie pure est devenu prodigieusement restreint. Il y a là un danger contre lequel il importe de se prémunir. N'oublions pas que, si l'Analyse a acquis des moyens d'investigation qui lui faisaient défaut autrefois, elle les doit en grande partie aux conceptions introduites par les Géomètres. Il ne faut pas que la Géométrie demeure en quelque sorte ensevelie dans son triomphe. C'est à son école que nous avons appris, que nos successeurs aurant à apprendre, à ne jamais se fier aveuglément aux méthodes trop générales, à envisager les questions en elles-mêmes et à trouver, dans les conditions particulières à chaque problème, soit un chemin direct vers une solution facile, soit le moyen d'appliquer d'une manière appropriée les procédés généraux que toute science doit rassembler. Ainsi que le dit Chasles au commensement de l'Aperçu historique : « Les doctrines de la pure Géométrie offrent souvent, et dans une foule de questions, cette voie simple et naturelle qui, pénétrant jusqu'à l'origine des vérités, met à nu la chaîne mystérieuse qui les unit entre elles et les fait connaître individuellement de la manière la plus lumineuse et la plus complète. »
Cultivons donc la Géométrie qui a ses avantages propres, sans vouloir, sur tous les points, l'égaler à sa rivale. Au reste, si nous étions tentés de la négliger, elle ne tarderait pas à trouver dans les applications des Mathématiques, comme elle l'a déjà fait une première fois, les moyens de renaître et de se développer de nouveau. Elle est comme le Géant Antée qui reprenait ses forces en touchant la Terre.
Gaston DARBOUX, Étude sur le développement des méthodes géométriques, 1904, in W. W. Rouse BALL, Histoire des Mathématiques, t. I, 1904 et t. II, 1907
Référence: 077
NOTE LIMINAIRE L'ouvrage est partagé en 24 leçons et respecte l'ordre du programme * : géométrie orientée, transformations, coniques. L'étude de ces dernières est présentée, pour chacune d'elles, à partir de leur définition classique. L'étude en est reprise ensuite à partir de la définition commune. Il semble que cette manière d'opérer soit de nouveau en faveur dans nos classes. Le plus grand soin a été apporté à la clarté des figures et au choix des exercices qui, dès les premières leçons, comportent des textes des problèmes proposés au Baccalauréat.
|
49,00 €
*
|
|
MICHEL : Compléments de géométrie moderne, 1926 + LEMAIRE : Exercices de géométrie moderne, 1937 +..Compléments de géométrie moderne Exercices de géométrie moderne Les correspondances algébriques (1,1), (2,1), (2,2) |
58,00 €
*
|
|
Référence: 110
ARTICLES : III-1 : PRINCIPES DE LA GÉOMÉTRIE III-1a : NOTES SUR LA GÉOMÉTRIE NON-ARCHIMÉDIENNE III-2 : LES NOTIONS DE LIGNE ET DE SURFACE III-3 : EXPOSÉ PARALLÈLE DU DÉVELOPPEMENT DE LA GÉOMÉTRIE SYNTHÉTIQUE ET DE LA GÉOMÉTRIE ANALYTIQUE PENDANT LE 19e SIÈCLE III-4 : GÉOMÉTRIE ÉNUMÉRATIVE III-5 : LA THÉORIE DES GROUPES CONTINUS ET LA GÉOMÉTRIE |
Au lieu de 31,00 €
31,00 €
*
|
|
Référence: 111
ARTICLES : III-8 : GÉOMÉTRIE PROJECTIVE III-9 : CONFIGURATIONS * * La fin de l'article n'a pas été publiée en raison de la guerre. |
24,00 €
*
|
|
Référence: 112
ARTICLES : III-17 : CONIQUES III-18 : SYSTÈMES DE CONIQUES III-19 : THÉORIE GÉNÉRALE DES COURBES PLANES ALGÉBRIQUES * * La fin de l'article n'a pas été publiée en raison de la guerre. |
35,00 €
*
|
|
Référence: 113 |
27,00 €
*
|
|
Référence: 065
Cet ouvrage doit être loué pour sa grande clarté, sa concision dans l'exposé, sa progression bien ordonnée du plus facile au plus difficile, la multitude des nouvelles idées qu'il apporte et pour une réalisation parfaite. A cause de cela, nous devons en recommander la lecture ; on y puisera une riche nourriture spirituelle qui contribuera incontestablement à la conservation et au progrès du véritable esprit géométrique qui manque parfois dans la mathématique nouvelle. |
31,00 €
*
|
|
Référence: 315
Cet ouvrage, publié en 1707, avait été composé, trente ans auparavant, pour servir aux leçons que donnait son immortel auteur dans l'Université de Cambridge, où il était professeur de mathématiques. Peu volumineux, comme tous les bons livres que la réflexion a mûris, celui-ci mérita non seulement d'être mis au nombre des plus excellents livres élémentaires, mais encore de tenir une place remarquable parmi les ouvrages d'invention, qui augmentent le domaine de la science par des vérités neuves et importantes. Voici ce qu'en disait, sous ce dernier rapport, l'abbé de Gua, Géomètre de l'Académie des Sciences, en 1741. « Quoique Newton fût né, dit-il, dans un temps ou l'analyse paraissait déjà presque parfaite, cependant un si grand génie ne pouvait manquer de trouver à y ajouter encore. Il a donné en effet, successivement, dans son Arithmétique universelle : 1°. Une règle très élégante et très belle pour reconnaître les cas où les équations peuvent avoir des diviseurs rationnels, et pour déterminer, dans ces cas, quels polynômes peuvent être ces diviseurs ; 2°. Une autre règle pour reconnaître, dans un grand nombre d'occasions, combien il doit se trouver de racines imaginaires dans une équation quelconque ; une troisième pour déterminer d'une manière nouvelle les limites des équations ; enfin une quatrième pour découvrir en quel cas les équations des degrés pairs peuvent se résoudre en d'autres de degrés inférieurs dont les coefficients ne contiennent que de simples radicaux du premier degré. » Considérée comme ouvrage élémentaire destiné aux commençants, l'Arithmétique universelle nous paraît encore plus recommandable. C'est un modèle de méthode, de précision, d'élégance : c'en est un dans l'art de généraliser ses idées, dans le choix des problèmes, dans la variété des solutions. |
125,00 €
*
|
|
Référence: 085
Cet ouvrage a pour but de montrer par de nombreux exemples tout le parti que l'on peut tirer des théories géométriques modernes et comment elles permettent de résoudre avec simplicité beaucoup de problèmes dont la solution par la géométrie classique serait des plus compliquées. « En voici les neuf parties : |
90,00 €
*
|
|
Référence: 305
A reparaître Il n'y a guère lieu de chercher à perfectionner les études de trigonométrie rectiligne en restant toujours dans le domaine rectiligne ; la perfection et les ouvertures sur beaucoup d'extensions sont dans le domaine sphérique. |
|
PETERSEN : Méthodes et théories pour la résolution des problèmes de constructions géométriques, 1880Plusieurs siècles avant l'ère chrétienne, la Géométrie était déjà arrivée à un très haut degré de développement. L'Algèbre qui lui a rendu plus tard de si grands services, avait progressé plus lentement ; aussi les anciens en étaient-ils à peu près exclusivement réduits aux méthodes géométriques pour résoudre les problèmes de construction et la solution de ces questions jouait-elle un rôle important dans leurs ouvrages.
|
20,00 €
*
|
|
Référence: 132
Prisonnier de guerre lors de la retraite de Moscou en 1812, Poncelet occupa ses loisirs forcés à retrouver les éléments de géométrie qui, bien des années auparavant lui avaient été enseignés, et à approfondir quelques idées neuves que ce travail lui avait suggérées. Ses très remarquables découvertes furent exposées plus tard dans son Traité des propriétés projectives des figures, publié en 1822, et qui fut pendant de longues années le seul ouvrage propre à initier les mathématiciens à cette géométrie moderne que Poncelet a la gloire d’avoir fondée. |
150,00 €
*
|
|
Référence: 136
Il y a deux manières d'écrire un livre destiné aux études : on peut se restreindre aux Programmes officiels et n'en pas franchir le cadre ; on peut aussi, en suivant strictement ces Programmes dans ce qu'ils ont d'obligatoire, aller au delà et essayer de les compléter. |
105,00 €
*
|
|
Référence: 092
Le premier Chapitre de cette sixième édition renferme les premiers éléments de la théorie des fonctions circulaires ; le deuxième est relatif à la construction et à l'usage des Tables trigonométriques ; les deux Chapitres suivants contiennent la Trigonométrie proprement dite, c'est à dire l'ensemble des principes sur lesquels repose la résolution des triangles rectilignes ou sphériques. Ces quatre Chapitres constituent la partie élémentaire de notre Ouvrage. Dans le Chapitre cinquième, nous donnons un complément assez étendu de la théorie des fonctions circulaires, si utile dans les parties élevées des Mathématiques. Enfin le sixième Chapitre, qui termine l'Ouvrage, est surtout consacré au développement des solutions trigonométriques fondées sur l'emploi des séries ; ces solutions se rapportent à différents cas qui se présentent fréquemment dans l'Astronomie et dans le Géodésie, et pour lesquels les méthodes générales deviennent insuffisantes.
|
35,00 €
*
|
|
Référence: 034
Qui veut connaître réellement ce qu'était la Géométrie grecque, soit comme forme, soit comme fond, doit l'étudier sur les écrits mêmes ou, au moins, sur les traductions d'Euclide, d'Archimède, d'Apollonius et de Pappus. Mais ces écrits ne peuvent nous apprendre l'histoire de la Science ; ils nous laissent ignorants de son origine, de ses premiers développements, de même que, par suite de la perte d'Ouvrages considérables, ils ne nous permettent pas d'apprécier, sans recourir à des conjectures, la direction des travaux concernant la Géométrie supérieure et le niveau réel des connaissances atteintes. |
27,00 €
*
|
|
-5%
31 - 45 sur 45 résultats |
|